Treatment Options for Patients with EGFRm NSCLC

Giorgio V. Scagliotti
University of Torino
Department of Oncology
giorgio.scgliotti@unito.it

Discussion

- Abstract 1300 Efficacy and safety of BI 1482694 (HM61713), an EGFR mutant-specific inhibitor, in T790M-positive NSCLC at the recommended phase II dose – Keunchil Park et al
- 1310 Combination of chemotherapy and gefitinib as first-line treatment of patients with advanced lung adenocarcinoma and sensitive EGFR mutations: A randomised controlled trial Baohui Han et al

How the EGFR Story Has Unfold in NSCLC

Discussion

- Abstract 1300 Efficacy and safety of BI 1482694 (HM61713), an EGFR mutant-specific inhibitor, in T790M-positive NSCLC at the recommended phase II dose – Keunchil Park et al
- 1310 Combination of chemotherapy and gefitinib as first-line treatment of patients with advanced lung adenocarcinoma and sensitive EGFR mutations: A randomised controlled trial Baohui Han et al

Acquired Resistance to 1st and 2nd generation EGFR TKIs

Adapted from: Gibbons and Byers et al, *Cancer Discov*, 2014 Yu, H.A. et al, *Clin Cancer Res*, 2014

Third Generation EGFR-TKIs Agents

AZD9291 mono-anilino-pyrimidine compound, irreversible mutant selective EGFR-TKI

Rociletinib (CO-1686) a 2,4-disubstituted pyrimidine molecule, irreversible mutant-selective EGFR-TKI

HM61713 selective inhibitor for activating EGFR and T790M mutations

EGF816: Covalent, irreversible, EGFR-TKI for EGFR and T790M mutations

ASP8273 Mutant selective irreversible of EGFR and T790M mutations

BI 1482694 (HM61713) - *In vitro* cell growth inhibition in NSCLC

	Inhibition concentration (IC ₅₀ , nM)			
	H358	HCC827	H1975	
	EGFR WT	EGFR ^{Del19}	EGFR ^{L858R/T790M}	
Erlotinib	449	3.2	2,253	
Afatinib	31	1.8	53	
BI1482694	2,225	9.2	10	

- Oral EGFR mutant-specific TKI
 - Potent and irreversible inhibition of sensitizing (Del19, L858R) and resistance (T790M) EGFR mutations
 - More than 200-fold selectivity over wild-type EGFR

In vitro inhibitory concentrations of EGFR-TKIs

Costa DB et al. TLCR 2015;4:809-15

ORR and tumor shrinkage in T790M+ patients (independent review)

	Evaluable patients (n=69)
OR (confirmed and unconfirmed), n (%)	43 (62)
Disease control, n (%) Confirmed OR, n (%) SD, n (%)	63 (91) 32 (46) 31 (45)
PD, n (%)	3 (4)
NE, n (%)	3 (4)

 DoR is immature; in patients with confirmed OR, response duration ranged between 6 and 31 weeks at data cut-off

Third-generation EGFR TKIs

Drug Name	DLT	Recommended dose	RR	Toxicity	Status
AZD9291	-	80 mg QD	61%	Diarrhea, rash, nausea, ILD, QTc prolongation, decreased appetite	Phase III
CO-1686	hyperglicemia	500 mg BID	53%	Hyperglicemia, nausea, diarrea, QTc prolongation, fatigue	Phase III
EGF816	Rash, acute kidney injury	320 mg once per day (than 240 within trial)	60%	Rash, diarrhea, stomatitis, pruritus	Phase II
BI1482694/HM 61713	Abdominal pain, diarrhea	800 mg QD	62%	Diarrhea, nausea, dry skin, rash, pruritus	Phase II
ASP 8273	Diarrhea, nausea, malaise, colitis, biliary tract infection	300 mg QD (MTD 400 mg QD)	67%	Diarrhea, nausea, vomiting, rash (few), ILD, hyponatremia, QTc prolongation	Phase II

Acquired resistance to 3rd generation EGFR inhibitors

Acquired resistance to rocelitinib

• 12 patients with T790M+ tumors at start of rocelitinib

13 biopsy samples

7 tumors retained T790M at the time of rocelitinib resistance

- 3 tumors gained EGFR amplification
- 6 had loss of T790M at the time of rocelitinib resistance
 - Tumors became T790 wild type
 - 2 T790 wild-type tumors has conversion to SCLC histology

Piotrowska et al Cancer Discov 2015

Acquired resistance to AZD9291

 Study of cell free plasma DNA (cfDNA) from 15 patients with acquired resistance to AZD9291 (all had T790M at the start of AZD9291).

- 6/15 cases: acquired C797S mutation
 - genotype: EGFR exon19 del, T790M, C797S
- 5/15 cases: maintained T790M; no C797S
 - genotype: EGFR exon19 del, T790M
- 4/15 cases: lost T790M mutation
 - genotype: EGFR exon19 del

Thress et al Nature Medicine 2015

Sensitivity of different combinations of primary, secondary and tertiary combinations of EGFR mutations

Ayeni D. et al. Clin. Cancer Res. 2015; 21:3818-22

Acquired resistance to *EGFR T790M* specific TKIs The next issue...New treatment algorythms?

Future Directions & Ongoing Questions

- 1) Multiple third-generation EGFR inhibitors being developed.
 - ✓ High response rates across the board in first/second generation resistant tumors with T790m.
- Optimal sequence of these EGFR inhibitors is currently unknown.
 - ✓ The presence of specific EGFR resistance mutations to 3rd generation EGFR TKIs will also matter in selecting therapy.
 - ✓ AEs may dictate use of specific agents in specific clinical contexts.
- 3) Will first generation EGFR TKIs be replaced as the first-line treatment in EGFR mutated tumors?
- 4) Will these agents be effective in the adjuvant setting?
- 5) How will immune therapy play a role in combination with these agents?
- 6) What is the prognostic role of these tertiary mutations?

Discussion

- Abstract 1300 Efficacy and safety of BI 1482694 (HM61713), an EGFR mutant-specific inhibitor, in T790M-positive NSCLC at the recommended phase II dose Keunchil Park et al
- 1310 Combination of chemotherapy and gefitinib as first-line treatment of patients with advanced lung adenocarcinoma and sensitive EGFR mutations: A randomised controlled trial -Baohui Han et al

Key features of the study

- Hypothesis: Lower TS expression in EGFR mutants and gefitinib down-regulate TS. Activity of AC in front line when combined with Gefitinib
- Small phase II randomized East-Asian study (≈ 40 per arm) with some (expected unbalances in demographics)
- DCR inferior for AC
- Data indicate a PFS benefit for AC+G versus G versus AC
 . OS data not available
- PFS data for del19 indicate a not significant difference between G and G+AC
- Toxicity profile of G versus G+AC pretty similar. No ILD

Down-regulation of TS by Gefitinib in NSCLC

Synergystic activity of gefitinib with S-1 through TS down-regulation

How to investigate Pem plus Gefitinib in the clinical setting

- Concurrent Gefitinib and Pemetrexed
 (as previously done in INTACT and TRIBUTE)
- Intercalating Gefitinib and Pemetrexed
- (as in the FASTACT trial)
- Pemetrexed followed by Gefitinib (similarly to INFORM trial)
- Adding Pemetrexed at progression
- Confounding Factors: EGFR mutation vs. clinically enriched vs. general population and line of therapy

Intercalating EGFR-TKIs and Chemotherapy

Erlotinib→ docetaxel

Erlotinib induces G₁ arrest, which can block the M-phase activity of docetaxel

Docetaxel → Erlotinib

Docetaxel induces M-phase arrest and apoptosis, enhanced by the anti-cell survival effect of erlotinib

Chemotherapy added to EGFR-TKI

Study	Phase	N	Primary Endpoint	Patients		Treatment arm
STEP (UMIN000006433)	II	60	PFS	Acquired resistance to Gefitinib	→	Gefitinib + S-1
LOGiK1102 (UMIN000006976)	II	80	PFS	Acquired resistance to 2 nd line~ EGFR-TKI -		EGFR-TKI + Singlet chemo Singlet chemo
JMTO LC12-01 (UMIN000007765)	II	60	PFS	≥75 years, Acquired resistance to _ 1 st line Gefitinib		Gefitinib + DTX DTX
LOGIK1105 (UMIN000008027)	II	70	PFS	≥70 years, Acquired resistance to _ 1 st line Gefitinib	<u></u>	Gefitinib + Singlet chemo Singlet chemo
NEJ017 (UMIN000008364)	II	100	PFS	≥75 years or PS2, Acquired resistance to _ 1 st line EGFR-TKI	-	EGFR-TKI + DTX or PEM DTX or PEM
IMPRESS (NCT01544179)	III	250	PFS	Acquired resistance to 1 st line Gefitinib –		Gefitinib + CDDP/PEM CDDP/ PEM

IMPRESS - PFS (primary endpoint; ITT)

Phase II study of gefitinib ± pemetrexed as first line therapy in EGFR mutants

Inclusion Criteria:

- Adult patients ≥18 years (≥20 years in Japan and Taiwan)
- Confirmed advanced (Stage IV) or recurrent NS NSCLC^a
- Activating EGFR mutations
- ECOG PS ≤1
- No prior systemic chemotherapy, immunotherapy, or biological therapy

Oral gefitinib 250 mg QD + pemetrexed 500 mg/m² IV on R Day 1 every 3-week cycle Until disease progression, Standard folic acid and D N=191 unacceptable Vitamin B₁₂ supplementation^c 0 2:1 toxicity, or M another permitted reason Z Oral gefitinib 250 mg QD for study Eb (n=65)discontinuation

Primary Endpoint: PFS
Key Secondary Endpoints^d: Overall survival (OS), Overall response,
Disease control rate (DCR), Duration of response (DoR), Quality of life (QoL), Safety

- Enrollment period: February 2012 August 2013
- Data cut-off date: 22 April 2015
- Planned enrollment of 188 patients for 145 PFS events with 70% power to detect an HR=0.79 with a one-sided α level of 0.2
- Tumor samples were collected for biomarker analyses
- Patients were followed up approximately every 90 days (±14 days) after study treatment discontinuation for survival

Primary Endpoint: PFS – ITT Population

Subgroup analysis: G+P more active in female, never smokers and Korean vs. others patients

Cheng Y. et al. Proc. IASLC 2015 -oral 17.2

Randomised phase II study of gefitinib + pem/platinum vs. pem/platinum in NS- NSCLC

Gefitinib intercalated on days to 16 of a 3 week cycle

Enrolled and randomized n=117 – PC-G n=58 – PC n=59

Primary end point: non progression rate at 12-weeks (84.5% versus 83.1%, p=0.87)

ORR 50% versus 47.4%

Toxicity: Higher incidence of skin rush in PC-Gefitinib

Phase III study of Pemetrexed /Cisplatin followed by Gefitinib versus Gefitinib Alone in Never Smoker Asians with advanced NS-NSCLC

Phase III study of Pemetrexed /Cisplatin followed by Gefitinib versus Gefitinib Alone in Never Smoker Asians with advanced NS-NSCLC

Second line post-discontinuation therapy in the Gefitinib arm

Yang J et al JTO 2016; 11:370-79

Future Directions & Ongoing Questions

- Although chemo is more effective in EGFR mutants the level of activity is definitively inferior to dedicated targeted therapies
- Is the combination of pemetrexed and gefitinib (or any EGFR TKI) a research priority? No
- A role for chemo (concurrent od intercalated to EGFR TKI) may theoretically exist for Exon21 mutations
- Are the data today presented worth of a phase III study? Not sure