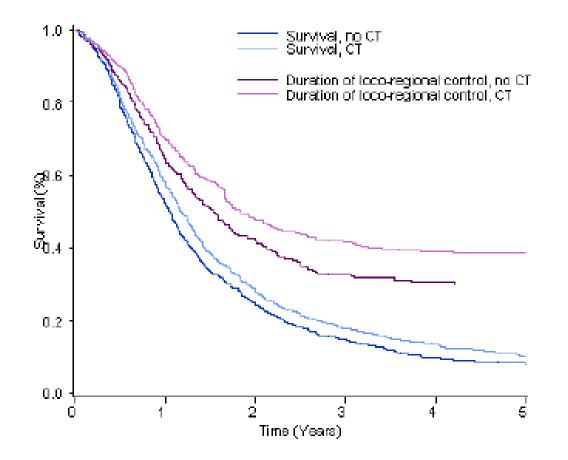
Oligometastatic non small cell lung cancer without driver mutations: New developments, including immunotherapy

Egbert F. Smit MD PhD Dept. Thoracic Oncology, Netherlands Cancer Institute & Pulmonary Diseases, Vrije Universiteit VU Medical Center, Amsterdam, The Netherlands,

Disclosures

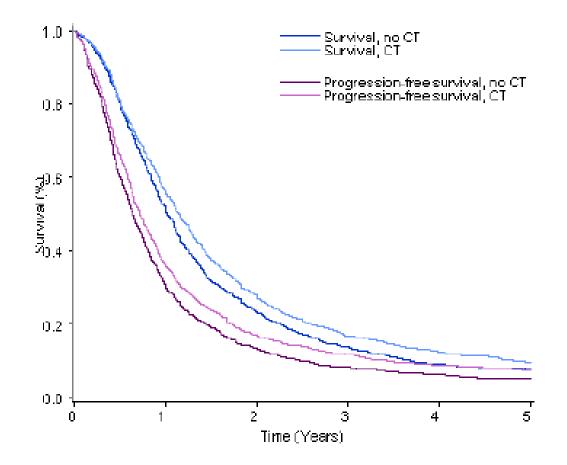
- Consultancy: Eli Lilly
- Advisory Boards: Astra Zeneca, Boehringer Ingelheim, Bayer, Cellgene, Novartis, Clovis, Roche-Genentech, Pfizer, BMS.
- Research Funding: Astra Zeneca, Boehringer Ingelheim, Bayer, Clovis, Roche-Genentech.
- Stock Options: None
- I will not discuss off label use or promote non-registered drugs

Agenda

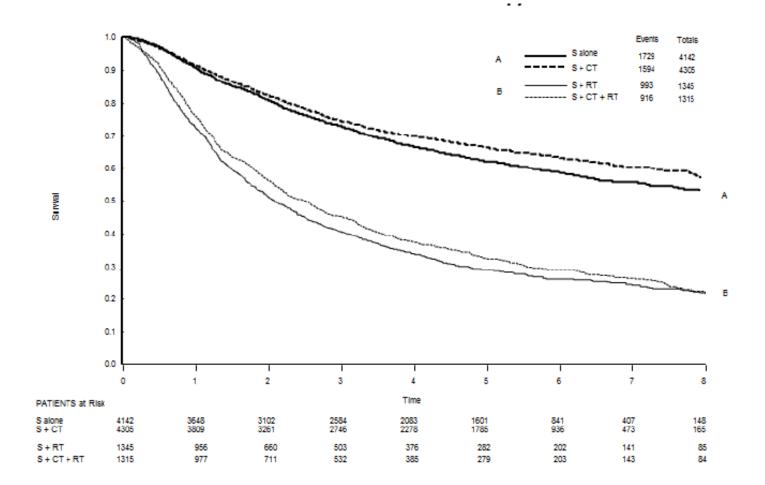

- Why systemic therapy?
- Which systemic therapy?
 - Chemotherapy
 - Immunotherapy
- Timing of systemic therapy
 - Chemotherapy
 - Immunotherapy

Why systemic therapy? Lessons from early disease

- Improve local-regional control
 - When used in conjuncture with radiotherapy


- Improve distant control
 - As adjuvant strategy to surgery

Improving loco-regional control in unresectable stage III NSCLC



Mauguen et al. Lancet Oncology 2013

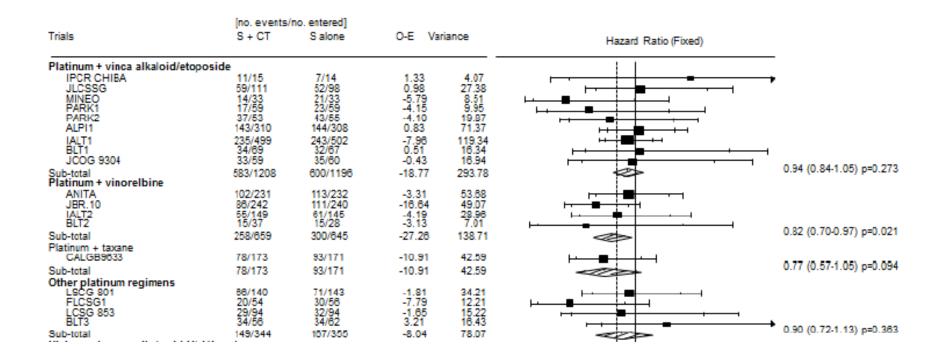
Improving distant control rates in unresectable stage III NSCLC

Adjuvant chemotherapy in resectable disease

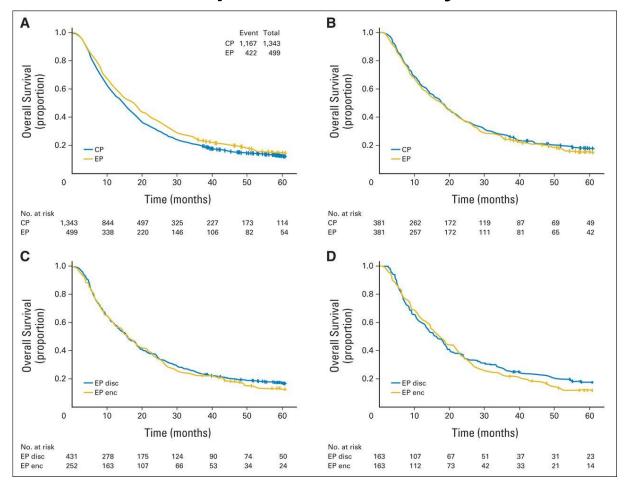
Why systemic therapy?

Limited efficacy in stage IV

 Palliative treatment

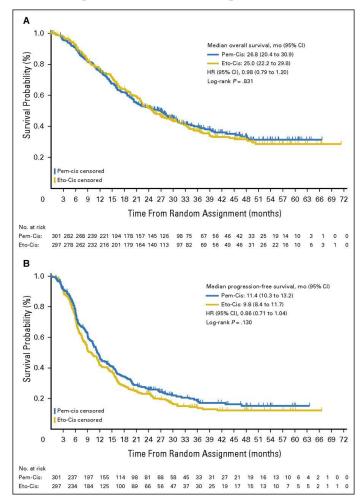

Control possible by local therapies?
 – SBRT NCT01761929

No randomised trials

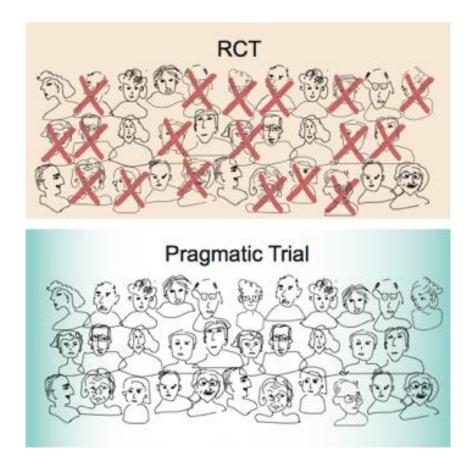

Which systemic therapy? Cytotoxic chemotherapy

- Depends on local treatment modality
 - Surgery
 - Radiotherapy (conventional)
 - SABR
- Extrapolating from Stage IB-IV experience

Adjuvant chemotherapy



Concurrent chemoradiation Retrospective analysis


Santana-Davila, J. Clin. Oncol. 2015

Concurrent chemoradiation. Prospective phase III

Senan et al. J. Clin. Oncol. 2016

Daily practice in oligometastatic NSCLC

Radical treatment of non-small cell lung cancer (NSCLC) patients with synchronous oligometastases: Results of a prospective phase II trial (NCT01282450)

Main inclusion criteria:

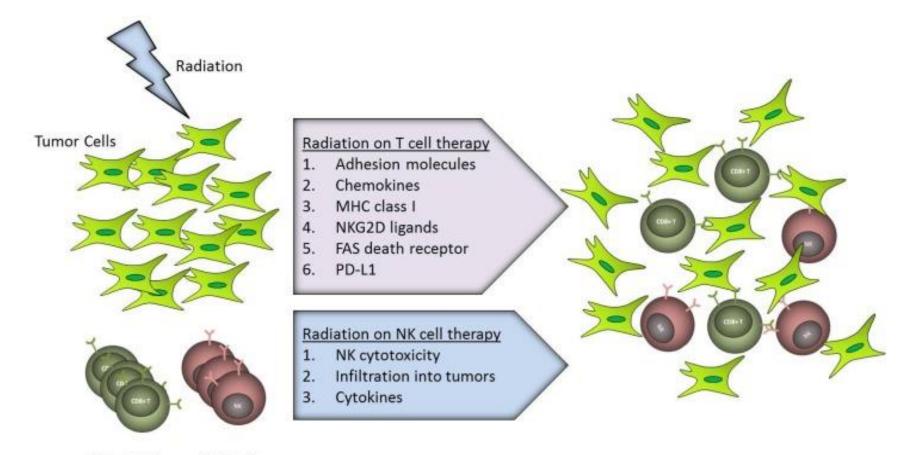
Pathological proven NSCLC; UICC 6th edition stage IV; oligometastases (< 5) at primary diagnosis, which are amendable for radical local treatment (i.e. surgery or radiotherapy to a biological equivalent of at least 60 Gy/ 30 fractions), performance status 0-2.

Main exclusion criteria: stage I-III, except for T4 because of pleural metastases without effusion.

Primary endpoint: Overall survival (OS).

Secondary endpoints: Progression-Free survival (PFS), dyspnoea

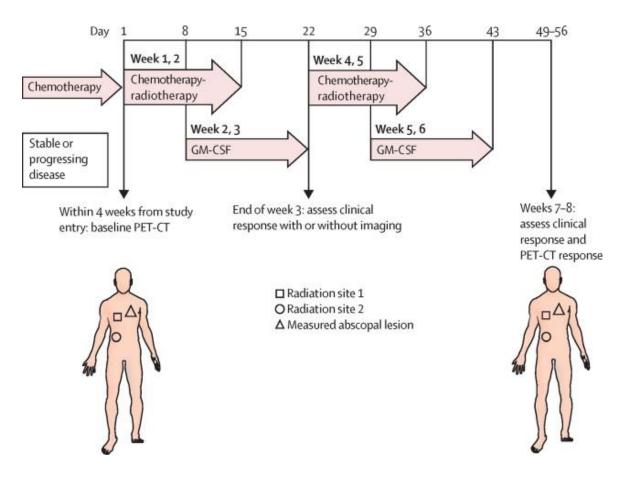
Chemotherapy regimens used

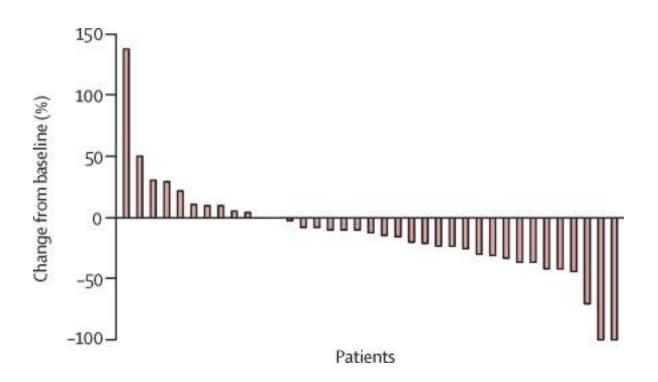

Chemo	therapy	
	No	2 (5.1 %)
	Sequential chemo-radiotherapy	15 (38.5 %)
	Cisplatin-gemcitabine	11
	Carboplatin-gemcitabine	1
	Cisplatin-pemetrexed	3
	Concurrent chemo-radiotherapy	21 (53.8 %)
	Cisplatin-etoposide	7
	Cisplatin-vinorelbine	14
	Adjuvant	1 (2.6 %)
	Cisplatin-gemcitabine	
Radioth (18-79.1	nerapy dose 2)	62.3 ± 10.1 Gy
Numbe	r fractions	35.9 ± 8.4 (3-44)

Immunotherapy why?

• No data in resectable disease

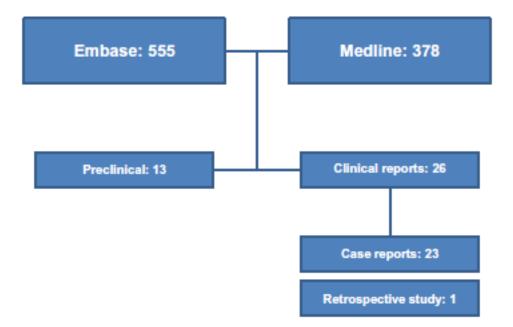
- Feasible in combination with radiotherapy?
 Enhancement of abscopal effect?
- Promising data in stage IV disease


The abscopal effect


CD8+T Cells

NK Cells

Does it exist in lung cancer?

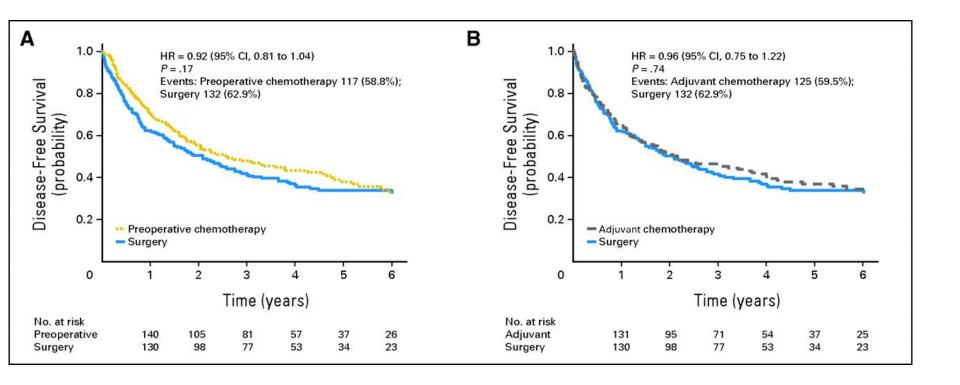

Best response

Efficacy

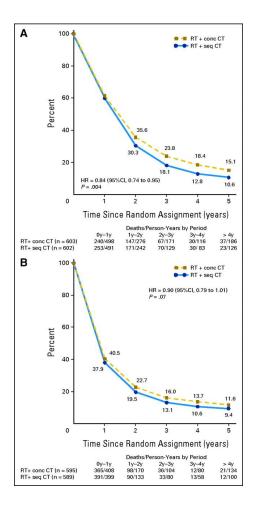
	Patients diagnosed	Patients completing scheduled therapy	Patients not assessable for best abscopal response	Patients assessable for best abscopal response			Patients assessable for best abscopal response who completed their scheduled therapy				
				PD	SD	PR	CR	PD	SD	PR	CR
Non-small-cell lung cancer	18 (44%)	13 (32%)	2 (5%)	2	10	2	2	1	7	2	2
Breast cancer	14 (34%)	11 (27%)	1(2%)	2	6	5	0	2	4	4	0
Thymic cancer	2 (5%)	2 (5%)	-	0	0	2	0	0	0	2	0
Urothelial cancer	2 (5%)	0		0	2	0	0	0	0	0	0
Ovarian cancer	2 (5%)	0	1(2%)	0	1	0	0	0	0	0	0
Eccrine cancer	1 (2%)	1(2%)		0	1	0	0	0	1	0	0
Cervical cancer	1 (2%)	1(2%)	-	0	1	0	0	0	1	0	0
Small-cell lung cancer	1(2%)	1(2%)		1	0	0	0	1	0	0	0
Total	41 (100%)	30 (73%)	4 (10%)	5	21	9	2	4	13	8	2
PD=progressive disease. SD=stable disease. PR=partial response. CR=complete disease.											

Radiotherapy, abscopal effects and checkpoint inhibitors

Few clinical data


Clinical cases of abscopal effect after RT+ immune therapy.

Pub. year	Refs,	∂ Age ♀	Histology	Primary site	Treatment of primary	RT treated sites		Non-irradiated abscopal regression	Time until abscopal response	PFS after response
2014	[69]	M 74	Adenocarci- noma	Lung	Resection	Supraclavi- cular LN	BCG-vaccine 58 Gy/29×	Lung M+	6 m	47 m
2013	[33]	M 64	Adenocarci- noma	Lung	CT (PD)	Hepatic M+	lpilimumab 30 Gy/5×	Liver M+/Bone M+/ Lung M+	3 m	5 m
2012	[24]	M 67	Malanama	Λ	Wide oversion /	Hapatic Mt	Inilimumah E4 Cu/2.	Cutanaous Mi	6 m	6 m


Timing of systemic therapy

- Depends on local treatment modality
 - Surgery
 - Radiotherapy (conventional)
 - SABR

Timing of cytotoxic chemotherapy Adjuvant or neo-adjuvant?

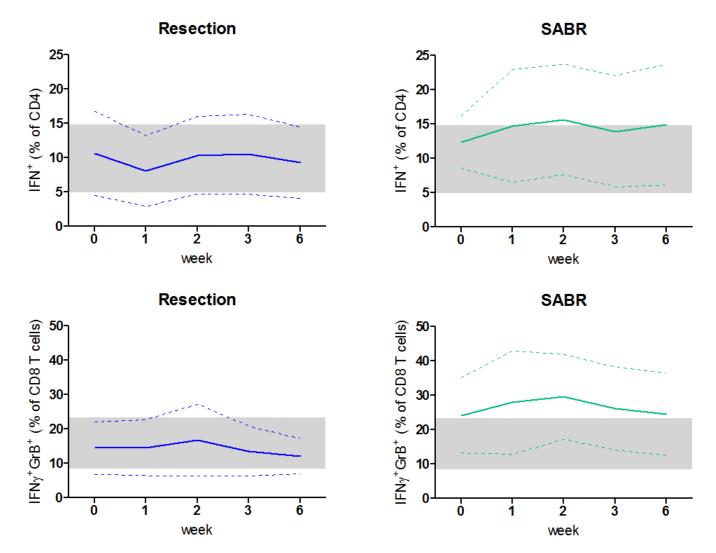
Sequential vs Concurrent CRT in NSCLC

Auperin et al. J. Clin. Oncol. 2010

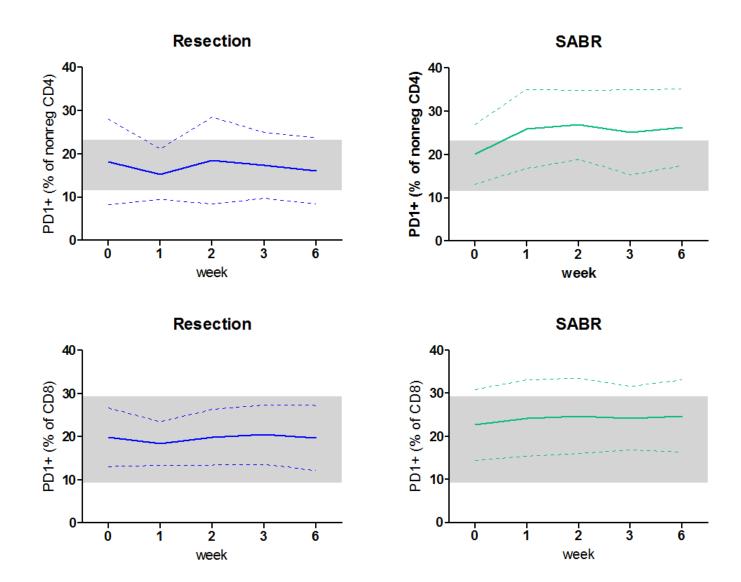
Timing of systemic therapy

- Depends on local treatment modality
 - Surgery
 - Radiotherapy (conventional)
 - SABR

Immunotherapy


Determination of peripheral blood immune cells during SABRT and surgery for early stage NSCLC (Hamlet study)

- Observational cohort study
- Stage I and IIa NSCLC, pathological proven
- Blood samples on week 1,2,3,4,5,6, after start of therapy
- Flowcytometric analysis of different immune cells,
 - Both fresh and frozen
 - Before and after stimulation


Patient Characteristics

	Surgery	SABR
Ν	17	10
Age, mean (±SD)	64 (±8.8)	70 (±10.3)
Sex		
Male	7 (41%)	7 (70%)
Female	10 (59%)	3 (30%)
NSCLC type	, ,	, ,
Adenocarcinoma	9 (53%)	4 (40%)
Squamous cell carcinoma	6 (35%)	5 (50%)
Large cell carcinoma	1 (6%)	
other	1 (6%)	1 (10%)
NSCLC stage (pre-ok, based on		
cTNM)	7 (41%)	7 (70%)
1A	5 (29%)	2 (20%)
1B	3 (18%)	
2A	1 (6%)	1 (10%)
2B	1 (6%)	
Unknown		
Comorbidities		
COPD	7 (41%)	3 (30%)
Other tumor	1 (6%)	3 (30%)
Diabetes	3 (18%)	2 (20%)
Other	7 (41%)	3 (30%)
Charlson comorbidity index	= (000)	0 (000)
Low (0 points)	5 (29%)	2 (20%)
Medium (1 to 2 points)	11 (65%)	3 (30%)
High (4 to 4 points)	1 (6%)	4 (40%)
Type of surgery Lobectomy	15 (999/)	
Segmentectomy	15 (88%) 1 (6%)	
Bilobectomy	1 (6%)	
Surgery technique	1 (0,0)	
VATS	13 (76.5%)	
Open	4 (23.5%)	
SABR	. (_0.070)	
Total dosis, mean (range)		54 Gy (51-60)
Number of fractions		
3		6 (60%)
5		1 (10%)
8		3 (30%)

The fraction of IFN_Y⁺ CD4 and IFN_Y⁺GranzymeB⁺ CD8 T cells increases after

Fraction of PD1⁺ increases by SABR

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Conclusions

• SABR but not surgery, stimulates T-cell activation

- Our findings suggest that SABR may induce a specific anti-tumor response, and investigations to establish this finding are ongoing.
- The upregulation of PD-1 inherently accompanied with this activation of the immune system potentially warrants combination treatment with PD-(L)1 blockade.

Conclusions

- No new developments in cytotoxic chemotherapy.
- Immunotherapy has the potential of augmenting responses in patients treated with radiotherapy and trials are underway.
- Randomized trials are desperately needed