



Institute of Pathology Heidelberg

UniversitätsKlinikum Heidelberg

# Proliferation in lung cancer: Worth measuring?

Arne Warth

Institute of Pathology, University Hospital Heidelberg

- No disclosures
- No conflicts of interest

## **Measurement of Proliferation**

Mitosis



Proliferation-associated antigens (Ki-67, PHH3, others)



#### <u>Ki-67</u>

- generated by immunizing mice with nuclei of the Hodgkin lymphoma cell line L428 (Gerdes et al., 1983).
- Ki = Kiel (city in northern Germany), 67 = number of the original clone in the 96-well plate.
- Ki-67 protein is present during all active phases of the cell cycle (G1, S, G2, and mitosis), but is absent from resting cells (G0).
- associated with ribosomal RNA transcription.
- Ki-67 and MIB-1 monoclonal antibodies are directed against different epitopes of the same proliferation-related antigen, MIB-1 is generally considered the most specific antibody.

Gerdes J, Schwab U, Lemke H, Stein H (1983). "Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation". Int. J. Cancer 31 (1): 13–20.

## Proliferation Assessment in Routine Diagnostics

- Mitotic count established for breast cancer grading, FNCLCC grading etc.
- Ki-67 currently only established for neuroendocrine tumors (NETs) of the GI tract.
- Ki-67 is frequently used for breast cancer in many institutions.

## **Proliferation in Cancer**

PubMed Search Results (April 2015)

- "Cancer" AND "Proliferation" = 164513 hits
- "Lung Cancer" AND "Proliferation" = 13300 hits
- "Lung Cancer" AND "Ki-67" = 983 hits
- "Lung Cancer" AND "MIB-1" = 196 hits

www.bjcancer.com

- 37 studies of NSCLC, SCLC (n=1) and carcinoids (n=2) published between 1991 and 2002
- 3983 patients total

### Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis

#### B Martin<sup>\*,1</sup>, M Paesmans<sup>2</sup>, C Mascaux<sup>1,4</sup>, T Berghmans<sup>1</sup>, P Lothaire<sup>3</sup>, A-P Meert<sup>1,4</sup>, J-J Lafitte<sup>5</sup> and J-P Sculier<sup>1</sup>

<sup>1</sup>Critical Care Department and Thoracic Oncology, Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles, Brussels, Belgium; <sup>2</sup>Data Centre, Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles, Brussels, Belgium; <sup>3</sup>Department of Surgery, Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles, Brussels, Belgium; <sup>4</sup>FNRS (Fonds National de la Recherche Scientifique), Belgium; <sup>5</sup>Department of Chest Medicine and Thoracic Oncology, CHRU Lille, Hôpital Calmette, Lille, France

there was no statistical difference in quality scores between the significant and nonsignificant studies evaluable for the meta-analysis, we were allowed to aggregate the survival results. The combined hazard ratio for NSCLC, calculated using a random-effects model was 1.56 (95% CI: 1.30–1.87), showing a worse survival when Ki-67 expression is increased. In conclusion, our meta-analysis shows that the expression of Ki-67 is a factor of poor prognosis for survival in NSCLC. *British Journal of Cancer* (2004) **91**, 2018–2025. doi:10.1038/sj.bjc.6602233 www.bjcancer.com Published online 16 November 2004

#### • Ki-67 range: 10-78%

• Ki-67 cut-off: 1-60%

Table I Main characteristics and results of the eligible studies

|                      |         |                              |        |                                         | N     | SCLC                    |        |                 |       |              |                            |       |       |       |
|----------------------|---------|------------------------------|--------|-----------------------------------------|-------|-------------------------|--------|-----------------|-------|--------------|----------------------------|-------|-------|-------|
|                      | All st  | All studies Any stage (I-IV) |        | Locoregional Surgical tr<br>(I-II) (I-I |       | treatment<br>-III) SCLO |        | Carc<br>CLC tum |       | noid<br>ours | Any histology<br>any stage |       |       |       |
| ·                    | Total   | \$                           | Total  | s                                       | Total | s                       | Total  | s               | Total | s            | Total                      | s     | Total | s     |
| Number of<br>studies | 37 (20) | 15 (10)                      | 10 (5) | 4 (4)                                   | 8 (5) | 3 (2)                   | 11 (6) | 3 (2)           | I (I) | l (l)        | 2 (1)                      | 2 (I) | 5 (2) | 2 (0) |

NSCLC = non-small-cell lung cancer; SCLC = small-cell lung cancer; S = number of studies identifying Ki-67 positivity as a statistically significant prognostic factor; () = number of studies evaluable for meta-analysis.

 $\rightarrow$  Overall 15/37 studies (40.5%) demonstrated a negative prognostic effect for Ki-67.

→ Only 5 NSCLC studies identifying Ki-67 as a statistically significant prognostic factor were available for meta-analysis

Table 3 HR value for NSCLC subgroups according to histology subtypes and stages

| Subgroup              | Studies | Patients | Fixed effect HR (95% CI) | Heterogeneity test | Ramdom effect HR (95% CI) |
|-----------------------|---------|----------|--------------------------|--------------------|---------------------------|
| Adenocarcinoma        | n=4     | 258      | 2.45 (1.66-3.64)         | P = 0.26           |                           |
| Nonsquamous carcinoma | n = 3   | 158      | 2.47 (1.32-4.57)         | P = 0.90           |                           |
| Stage I               | n = 4   | 783      | 1.56 (1.26-1.93)         | P = 0.17           |                           |
| Stage I-II            | n = 4   | 437      | 1.16 (0.82-1.66)         | P = 0.21           |                           |
| Stage I-III           | n = 6   | 533      | 1.79 (1.40-2.28)         | P = 0.04           | 1.82 (1.26-2.64)          |

→ Hazard ratios for histological NSCLC subtypes could only be analyzed for 258 adenocarcinomas and 158 non-squamous carcinomas



Contents lists available at SciVerse ScienceDirect



lungcand

journal homepage: www.elsevier.com/locate/lungcan

Review

#### Clinical impact of ki-67 labeling index in non-small cell lung cancer

#### Jan Nyrop Jakobsen\*, Jens Benn Sørensen

Department of Oncology, Finsencentre, Rigshospitalet, 9 Blegdamsvej, 2100 Copenhagen, Denmark

- Literature review from 2000 2012 (April).
- Exclusion of articles in which data on NSCLC histology could not be extracted.
- A total of 28 articles investigating Ki-67 in NSCLC were included.
- 25 articles reported solely on surgically treated stage I-III patients.

| Author/year                   | Histology<br>(%)                         | No. pts. | Stage   | Cutoff level %<br>(no. pts.) | End-point | Median<br>survival<br>months | Зу           | 5у           | Univariate<br>analysis | Multivariate<br>analysis |
|-------------------------------|------------------------------------------|----------|---------|------------------------------|-----------|------------------------------|--------------|--------------|------------------------|--------------------------|
| Yamashita et al. (2011) [46]  | ADC: 23<br>SQC: 16<br>BAC: 52<br>Oth: 9  | 44       | T1      | <5% (31)<br>≥5 (13)          | PFS       | -                            | 96<br>77     | 96<br>30     | =0.04                  | =0.04                    |
| Inoue et al. (2007) [53]      | ADC 100                                  | 97       | IA-IIIA | <5 (67)<br>>5 (30)           | DFS       |                              | -            | 99<br>76     | <0.001                 | 0.12                     |
| Haga et al. (2003) [31]       | ADC: 63<br>SQC: 36                       | 187      | I       | <10 (31)<br>≥10 (27)         | OS        | -                            | 95<br>80     | 90<br>70     | =0.0014 <sup>a</sup>   | -                        |
| Woo et al. (2008) [47]        | ADC: 100                                 | 184      | I       | <10 (105)<br>≥10 (79)        | PFS       | _                            | 95<br>72     | 93.2<br>68.6 | <0.001                 | -                        |
| Carbognani et al. (2002) [54] | ADC: 22<br>SQC: 63<br>LCC: 15            | 78       | I–IIIA  | <10 (50)<br>>10 (28)         | OS        | -                            | -<br>-       | -            | 0.76                   | 0.94                     |
| Tsubochi et al. (2006) [32]   | ADC: 54<br>SQC: 44<br>AdSq: 2<br>LCC: <1 | 219      | I–111   | <20 (na)<br>≥20 (na)         | OS        | -                            | -            | -            | =0.0008 <sup>b</sup>   | =0.026 <sup>b</sup>      |
| Minami et al. (2002) [34]     | ADC:100                                  | 47       | I       | <20 (25)<br>≥20 (25)         | OS        |                              | 92.0<br>77.3 | 88.0<br>53.1 | =0.004                 | Not sign                 |
| Shiba et al. (2000) [35]      | ADC: 59<br>SQC: 38<br>AdSq: 1<br>LCC: 1  | 156      | I–III   | <20 (75)<br>≥20 (78)         | OS        |                              |              | 67.7<br>39.6 | =0.0043                | =0.00879                 |
| Rigau et al. (2002) [49]      | ADC: 37<br>SQC: 49<br>LCC: 14            | 86       | I–IV    | ≤20 (75)<br>≥20 (11)         | OS        | -                            | -            | -            | -                      | =0.73                    |
| David et al. (2004) [57]      | ADC: 46<br>SQC: 30<br>NOS: 25            | 61       | I–IV    | ≤20 (na)<br>>20 (na)         | OS        | -                            | -            | -            | =0.92                  | -                        |
| Cagini et al. (2000) [33]     | ADC: 28<br>SQC: 44<br>LCC: 22<br>BAC: 5  | 99       | I–1I    | <20 (48)<br>≥20 (37)         | OS        | -                            | -            | 45<br>67     | =0.4                   | -                        |
| Demarchi et al. (2000) [36]   | ADC:100                                  | 64       | I–IIIB  | <22.22 (32)<br>>22.22 (32)   | OS        | -                            | 70<br>35     | 26<br>25     | <0.01                  | =0.44                    |

Table 1 Studies reporting on prognostic information of ki-67 labeling index in NSCLC (cut-off 5–25%).

<sup>a</sup> Multivariate analysis included only adenocarcinoma histology and smokers.

<sup>b</sup> Worse prognosis with high ki-67.

<sup>c</sup> Multivariate analysis included only Non-squamous carcinoma histology.

#### Overall cut-off levels ranged from 5% - 30%

- 13 papers did not explain how the cut-off was decided.
- 3 papers used the median Ki-67 labeling index, 1 study the H-score median.
- 7 studies refered to cut-off values from previous studies.
- only 1 study used the best discriminatory value.
- 8 studies did not mention the number of analyzed tumor cells.

| Author/year                  | Histology (%)                           | No. pts. | Stage  | Cut-off<br>level % (no.  | End-point | Median<br>survival | Зу       | 5у         | Univariate<br>analysis | Multivariate<br>analysis |
|------------------------------|-----------------------------------------|----------|--------|--------------------------|-----------|--------------------|----------|------------|------------------------|--------------------------|
|                              |                                         |          |        | pts.)                    |           | months             |          |            |                        |                          |
| Huang et al. (2005) [37]     | ADC: 58<br>SQC: 34<br>LCC: 8            | 173      | I–III  | <25 (na)<br>≥25 (na)     | OS        | -                  | 90<br>80 | 67<br>44.1 | =0.01                  | -                        |
| Ngyuen et al. (2007) [48]    | ADC: 57<br>SQC: 36<br>AdSq: 6<br>LCC: 2 | 53       | I–III  | <25 (na)<br>≥25 (na)     | DFS       | -                  | _        | -          | =0.047                 | =0.216                   |
| Imai et al. (2009) [38]      | ADC: 66<br>SQC: 31<br>LCC: 3            | 282      | Ι      | <25 (na)<br>≥25 (na)     | OS        | -                  | 96<br>80 | 96<br>69   | =0.0001                | =0.2762                  |
| Kaira et al. (2008) [39]     | ADC: 62<br>SQC: 31<br>LCC: 7            | 321      | I–III  | <25 (135)<br>≥25 (186)   | OS        | -                  | 92<br>75 | 90<br>65   | <0.001                 | =0.38                    |
| Yang et al. (2006) [40]      | ADC: 60<br>SQC: 39<br>LCC: 4<br>Oth: 6  | 128      | I–IIIA | <25 (28)<br>≥25 (100)    | OS        | 50<br>42.7         | 62<br>62 | 55<br>35   | =0.47                  | =0.30                    |
| Takahashi et al. (2002) [41] | ADC: 58<br>SQC: 42                      | 62       | NO     | <25 (40)<br>≥25 (22)     | DFS       | -                  | 80<br>60 | 80<br>55   | =0.023                 | =0.97                    |
| Maddau et al. (2006) [51]    | ADC: 38<br>SQC: 42<br>AdSq:18<br>LCC: 3 | 180      | I–III  | <25 (77)<br>≥25 (103)    | OS        |                    | 58<br>48 |            | =0.003                 |                          |
| Carvalho et al. (2000) [58]  | ADC:100                                 | 45       | I–IV   | <27.8 (30)<br>≥27.8 (15) | OS        | -                  | -        | -          | =0.53                  | -                        |
| Yoo et al. (2007) [42]       | ADC: 46<br>SQC: 54                      | 219      | I–IIIA | <30 (202)<br>≥30 (17)    | OS        | -                  | -        | 47<br>49   | =0.837                 | =0.696                   |
| Hommura et al. (2000) [43]   | ADC: 49<br>SQC: 42<br>AdSq: 4<br>LCC: 5 | 109      | I–II   | <30 (52)<br>≥30 (57)     | OS        | -                  | 85<br>55 | 78<br>48   | =0.01                  | =0.004                   |
| Ngyuen et al. (2000) [55]    | ADC: 57<br>SQC: 38<br>LCC: 5<br>BAC:1   | 89       | I–IV   | <30 (na)<br>≥30 (na)     | OS        | -                  | 38<br>35 | -          | >0.05                  | -                        |

### Table 2Studies reporting on prognostic information of ki-67 labeling index in NSCLC (cut-off 25–30%).

### Predictive Value of Ki-67 in NSCLC

#### Table 4

Studies on predictive information of ki-67 on chemotherapy in NSCLC.

| Author/year                     | Histology<br>(%)                        | No. pts. | Stage  | Treatment                          | Cut-off level<br>% (no. pts.)                                       | RR%                       | p-Value | Survival                    | p-Value |
|---------------------------------|-----------------------------------------|----------|--------|------------------------------------|---------------------------------------------------------------------|---------------------------|---------|-----------------------------|---------|
| Mohamed et al. (2008) [60]      | ADC: 53<br>SQC: 47                      | 28       | pN2    | Platinum<br>based                  | <20 (13)<br>>20 (23)                                                | 45.5<br>47.0 <sup>a</sup> | =0.937  | -                           | -       |
| Filipits et al. (2007) [52]     | ADC: 32<br>SQC: 56<br>Oth: 12           | 401      | I–111  | Cisplatin<br>based<br>adjuvant     | <85<br>(196/182)<br>>85<br>(205/195)<br><sup>b</sup> / <sup>c</sup> | -                         | _       | 48/45<br>49/50<br>d         | =0.45   |
| Yan et al. (2010) [61]          | ADC: 39<br>Oth: 61                      | 151      | I–III  | Various<br>adjuvant                | <50 (96)<br>≥50 (55)                                                | -                         |         | 22.24<br>29.37 <sup>e</sup> | =0.517  |
| Dingemans et al. (2001) [62]    | ADC: 63<br>SQC: 13<br>LCC: 24           | 36       | III–IV | Platinum<br>based                  | <30 (20)<br>31–60 (11)<br>>60 (5)                                   | 39 (7*)<br>80             | =0.085  | 13<br>9<br>11 <sup>f</sup>  | =0.51   |
| Van de Vaart et al. (2000) [63] | ADC: 22<br>SQC: 41<br>LCC: 33<br>Oth: 4 | 27       | III    | Concomitant<br>RT and<br>cisplatin | <60 (13)<br>>60 (14)                                                | -                         | -       | 8.8<br>12.4 <sup>f</sup>    | =0.13   |

<sup>a</sup> CR + PR.

<sup>b</sup> H-score (0–300).

<sup>c</sup> Chemotherapy group/control group.

<sup>d</sup> % alive at 5 years.

<sup>e</sup> DFS months.

<sup>f</sup> OS months 7\* including 0–60%.

- → Significant heterogeneity with respect to histology, case numbers, treatment, and cut-off levels
- $\rightarrow$  No study could provide evidence for a predictive value of Ki-67



### Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role

A Warth<sup>\*,1</sup>, J Cortis<sup>1</sup>, A Soltermann<sup>2</sup>, M Meister<sup>3,8</sup>, J Budczies<sup>4</sup>, A Stenzinger<sup>1</sup>, B Goeppert<sup>1</sup>, M Thomas<sup>5,8</sup>, F J F Herth<sup>6,8</sup>, P Schirmacher<sup>1</sup>, P A Schnabel<sup>1,8</sup>, H Hoffmann<sup>7</sup>, H Dienemann<sup>7,8</sup>, T Muley<sup>3,8,9</sup> and W Weichert<sup>\*,1,9</sup>

- Test cohort: 1065 NSCLCs including 482 adenocarcinomas (TMA Heidelberg)
- Validation cohort: 184 adenocarcinomas (TMA Zurich), 233 squamous cell carcinomas (TMA Heidelberg)
- Antibody: MIB-1 clone
- Evaluation: Counting of Ki-67 positive tumor cells/100 tumor cells



p<0.001 60-40-20lepidic papillary acinat cribitorm solid

Ki-67

ADC = Adenocarcinoma SQCC = Squamous Cell Carcinoma LC = Large Cell Carcinoma LCNEC = Large Cell Neuroendocrine Carcinoma ASC = Adeno-squamous Carcinoma

SC = Sarcomatoid Carcinoma

Warth A, Cortis J, Soltermann A, Meister M, Budczies J, Stenzinger A, Goeppert B, Thomas M, Herth FJ, Schirmacher P, Schnabel PA, Hoffmann H, Dienemann H, Muley T, Weichert W.: Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role. Br J Cancer. 2014 Sep 9;111(6):1222-9.

Warth A, Muley T, Kossakowski C, Stenzinger A, Schirmacher P, Dienemann H, Weichert W.: Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J Thorac Oncol. 2015 Apr;10(4):638-44.

| Table 1. Associatio<br>adenocarcinoma s                          | on of prolife<br>ubgroup (A      | erative ac<br>DC), and       | tivity with sta<br>the test coho       | ging param<br>ort squamo      | neters fo<br>us cell c  | r the whole tes<br>arcinoma subg | t cohort of no<br>roup (SQCC) | on-small ce | ll lung ca            | ncers (NS                    | CLC), the tes                | t cohort |
|------------------------------------------------------------------|----------------------------------|------------------------------|----------------------------------------|-------------------------------|-------------------------|----------------------------------|-------------------------------|-------------|-----------------------|------------------------------|------------------------------|----------|
| Characteristics                                                  | All<br>NSCLC                     | Ki-67<br>mean                | Ki-67 s.d.                             | P-value                       | ADC                     | Ki-67 mean                       | Ki-67 s.d.                    | P-value     | socc                  | Ki-67<br>mean                | Ki-67 s.d.                   | P-value  |
| All cases                                                        |                                  |                              |                                        |                               |                         |                                  |                               |             |                       |                              |                              |          |
|                                                                  | 1065                             | 40.7                         | 27.5                                   |                               | 482                     | 25.8                             | 24.6                          |             | 437                   | 52.8                         | 24.3                         |          |
| UICC stage                                                       |                                  |                              |                                        |                               |                         |                                  |                               |             |                       |                              |                              |          |
| <br>  <br>   <br> V                                              | 389<br>337<br>311<br>28          | 36.6<br>44.5<br>41.4<br>42.9 | 28.7<br>25.7<br>27.1<br>28.1           | 0.001                         | 198<br>103<br>165<br>16 | 21.5<br>34.1<br>31.2<br>34.7     | 22.2<br>25.3<br>25.0<br>27.3  | <0.001      | 161<br>172<br>98<br>6 | 52.6<br>52.2<br>53.7<br>59.0 | 25.4<br>23.4<br>24.2<br>19.9 | 0.888    |
| Tumour stage                                                     |                                  |                              |                                        |                               |                         |                                  |                               |             |                       |                              |                              |          |
| рТ1<br>рТ2<br>рТ3<br>рТ4                                         | 198<br>672<br>174<br>21          | 39.5<br>40.0<br>46.2<br>29.5 | 29.4<br>26.9<br>26.7<br>26.1           | 0.010                         | 92<br>306<br>70<br>14   | 23.0<br>28.9<br>31.1<br>23.6     | 23.0<br>24.8<br>25.4<br>22.2  | 0.123       | 84<br>278<br>69<br>6  | 53.9<br>51.6<br>56.8<br>46.7 | 26.2<br>24.1<br>21.6<br>29.9 | 0.374    |
| Nodal status <sup>a</sup>                                        |                                  |                              |                                        |                               |                         |                                  |                               |             |                       |                              |                              |          |
| pN0<br>pN1<br>pN2<br>pN3                                         | 545<br>261<br>247<br>5           | 38.4<br>45.5<br>40.0<br>38.0 | 28.1<br>25.4<br>27.5<br>29.4           | 0.008                         | 258<br>83<br>138<br>3   | 24.5<br>34.5<br>30.5<br>22.5     | 23.4<br>25.4<br>25.4<br>16.4  | 0.005       | 224<br>136<br>71<br>1 | 51.9<br>53.4<br>54.1<br>37.5 | 25.7<br>21.8<br>24.6         | 0.807    |
| Distant metastasis                                               |                                  |                              |                                        |                               |                         |                                  |                               |             |                       |                              |                              |          |
| M0<br>M1                                                         | 1038<br>27                       | 40.6<br>41.9                 | 27.5<br>28.1                           | 0.814                         | 467<br>15               | 27.8<br>32.3                     | 24.5<br>26.5                  | 0.484       | 431<br>6              | 52.7<br>59.0                 | 24.3<br>19.9                 | 0.527    |
| Abbreviations: s.d.= sta<br><sup>a</sup> For seven cases data of | andard deviati<br>of nodal statu | ion; UICC =<br>s were not    | Union Internatio<br>available (limited | nale Contre le<br>resection). | e Cancer.               |                                  |                               |             |                       |                              |                              |          |



- Dichotomization of a continous prognostic parameter means loss of prognostic information.
- A clinically relevant cut-off value should maximize the hazard ratio between the groups.
  - $\rightarrow$  mean/median values are not optimal
- 25% Ki-67 index was found as the optimal cut-off value for adenocarcinomas.

Ki-67 in SQCC





 $\rightarrow$  Ki-67 was found a stage-independend predictor of survival in adenocarcinomas (p=0.004; HR for overall survival 1.56)

#### npg 1117

#### A grading system combining architectural features and mitotic count predicts recurrence in stage I lung adenocarcinoma

Kyuichi Kadota<sup>1,2</sup>, Kei Suzuki<sup>1</sup>, Stefan S Kachala<sup>1</sup>, Emily C Zabor<sup>3</sup>, Camelia S Sima<sup>3</sup>, Andre L Moreira<sup>4</sup>, Akihiko Yoshizawa<sup>4,5</sup>, Gregory J Riely<sup>6</sup>, Valerie W Rusch<sup>1</sup>, Prasad S Adusumilli<sup>1,7</sup> and William D Travis<sup>4</sup>



| Variables                 | Ν   | %  | 5-year RFP (%) | P-value |
|---------------------------|-----|----|----------------|---------|
| Nuclear diameter          |     |    |                | 0.007   |
| Small                     | 232 | 48 | 86             |         |
| Intermediate              | 150 | 31 | 82             |         |
| Large                     | 103 | 21 | 74             |         |
| Nuclear atypia            |     |    |                | 0.006   |
| Mild                      | 231 | 48 | 87             |         |
| Moderate                  | 139 | 29 | 81             |         |
| Severe                    | 115 | 24 | 75             |         |
| Nuclear/cvtoplasmic ratio |     |    |                | 0.068   |
| Low/intermediate          | 391 | 81 | 80             |         |
| High                      | 94  | 19 | 91             |         |
| Chromatin pattern         |     |    |                | 0.092   |
| Homogeneous               | 85  | 18 | 87             |         |
| Fine granular             | 229 | 47 | 83             |         |
| Coarse granular           | 171 | 35 | 79             |         |
| Prominence of nucleoli    |     |    |                | 0.059   |
| Indistinct                | 133 | 27 | 87             | 0.000   |
| Distinct                  | 217 | 45 | 82             |         |
| Large                     | 135 | 28 | 87             |         |
| Intranuclear inclusion    |     |    |                | 0.190   |
| Absence                   | 441 | 91 | 82             |         |
| Presence                  | 44  | 9  | 88             |         |
| Mitotic count             |     |    |                | < 0.001 |
| Low                       | 204 | 42 | 91             |         |
| Intermediate              | 106 | 22 | 80             |         |
| High                      | 175 | 36 | 73             |         |
| Atypical mitoses          |     |    |                | < 0.001 |
| Absence                   | 362 | 75 | 86             |         |
| Presence                  | 123 | 25 | 72             |         |

Table 2 Association between nuclear features and recurrence

Abbreviation: RFP, recurrence-free probability.

Significant P-values are shown in bold: all P-values from log-rank test.



Survival Stratified by Mitotic Index



FIGURE 4. Survival stratified by Mitosis count. Survival stratified by mitosis counts showed clear divergence with statistically poorer survival for tumors with mitosis counts above 10/10 high-power fields (log-rank p < 0.0001).

| TABLE 3. Multivariate Analysis                         |        |       |       |              |                     |                              |
|--------------------------------------------------------|--------|-------|-------|--------------|---------------------|------------------------------|
|                                                        |        |       |       |              | 95% Confi<br>for Ha | dence Interval<br>zard Ratio |
|                                                        | В      | SE    | р     | Hazard Ratio | Lower               | Upper                        |
| Sex $(0 = male, 1 = female)$                           | -0.606 | 0.359 | 0.091 | 0.545        | 0.270               | 1.101                        |
| Age (0 = below median, 1 = above median)               | -0.071 | 0.322 | 0.826 | 0.932        | 0.495               | 1.753                        |
| Stage (7th edition) $(0 = 1A, 1 = 1B)$                 | 0.181  | 0.355 | 0.610 | 1.199        | 0.598               | 2.403                        |
| Nuclear grade (0 = grade 2 or 3, 1 = grade 4)          | 0.354  | 0.355 | 0.318 | 1.425        | 0.711               | 2.858                        |
| Necrosis $(0 = 0\%, 1 = 1\% \text{ or greater})$       | 0.333  | 0.406 | 0.412 | 1.395        | 0.629               | 3.090                        |
| Mitosis count (0 = 0-10 per 10 HPF, 1 ≥ 10 per 10 HPF) | 1.523  | 0.452 | 0.001 | 4.585        | 1.893               | 11.110                       |
| Differentiation (0 = moderate/well, 1 = poor)          | -0.027 | 0.357 | 0.940 | 0.973        | 0.484               | 1.959                        |

Multivariate Cox regression analysis entering age, sex, and the significant covariates from univariate analyses (all as dichotomous variables). B, regression coefficient; SE, standard error; hazard ratio, risk of death for prognostic variables (category 1 vs. category 0); HPF, high-power field.

### Prognostic and Predictive Value of Gene Expression Profiles in Adenocarcinomas

Clin Cancer Res; 19(22); 6261-71.

Clinical Cancer

Research

Imaging, Diagnosis, Prognosis

#### Validation of a Proliferation-Based Expression Signature as Prognostic Marker in Early Stage Lung Adenocarcinoma

Ignacio I. Wistuba<sup>1</sup>, Carmen Behrens<sup>2</sup>, Francesca Lombardi<sup>6</sup>, Susanne Wagner<sup>5</sup>, Junya Fujimoto<sup>2</sup>, M. Gabriela Raso<sup>3</sup>, Lorenzo Spaggiari<sup>6</sup>, Domenico Galetta<sup>6</sup>, Robyn Riley<sup>5</sup>, Elisha Hughes<sup>5</sup>, Julia Reid<sup>5</sup>, Zaina Sangale<sup>5</sup>, Steven G. Swisher<sup>4</sup>, Neda Kalhor<sup>3</sup>, Cesar A. Moran<sup>3</sup>, Alexander Gutin<sup>5</sup>, Jerry S. Lanchbury<sup>5</sup>, Massimo Barberis<sup>6</sup>, and Edward S. Kim<sup>2</sup>

ORIGINAL ARTICLE

(J Thorac Oncol. 2015;10: 67-73)

OPEN

#### Validation of a Molecular and Pathological Model for Five-Year Mortality Risk in Patients with Early Stage Lung Adenocarcinoma

Raphael Bueno, MD,\* Elisha Hughes, PhD,† Susanne Wagner, PhD,† Alexander S. Gutin, PhD,† Jerry S. Lanchbury, PhD,† Yifan Zheng, MD\* Michael A. Archer, DO,\* Corinne Gustafson, PhD,\* Joshua T. Jones, PhD,‡ Kristen Rushton, MBA,‡ Jennifer Saam, MS, LCGC, PhD,‡ Edward Kim, MD,§ Massimo Barberis, MD, || Ignacio Wistuba, MD,¶ Richard J. Wenstrup, MD,‡ William A. Wallace, PhD, FRCPE, FRCPath,# Anne-Renee Hartman, MD,‡, and David J. Harrison\*\*

- Establishment of a cell cycle progression (CCP) score based on the quantitative mRNA expression of 31 cell cycle-associated genes.
- One CCP unit represents a 2-fold change in expression levels (unweighted).



Establishment of the CCP score based on 2 public microarray datasets (DC, GSE31210) and FFPE samples from 2 institutions (n=381 stage I-II adenocarcinomas) Validation of the CCP score in a series of 650 stage I-II adenocarcinomas

 $\rightarrow$  The CCP score was the dominant prognostic variable in uni- and multivariate analyses

#### Predictive Value of the CCP Score



Absolute benefit from adjuvant treatment depending on CCP score (derived from the difference in survival ratios between treated and untreated patients; Zhang and Klein method). CCP high and low was based on the median cut-off point.

## Interobserver Agreement

**DOI:**10.1093/jnci/djt306 Advance Access publication November 7, 2013 © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

#### ARTICLE

#### J Natl Cancer Inst;2013;105:1897-1906

#### An International Ki67 Reproducibility Study

Mei-Yin C. Polley, Samuel C. Y. Leung, Lisa M. McShane, Dongxia Gao, Judith C. Hugh, Mauro G. Mastropasqua, Giuseppe Viale, Lila A. Zabaglo, Frédérique Penault-Llorca, John M.S. Bartlett, Allen M. Gown, W. Fraser Symmans, Tammy Piper, Erika Mehl, Rebecca A. Enos, Daniel F. Hayes, Mitch Dowsett, Torsten O. Nielsen, on behalf of the International Ki67 in Breast Cancer Working Group of the Breast International Group and North American Breast Cancer Group

• Participation of 8 experienced laboratories from the US and Europe.

- All participants used the MIB-1 clone but with different local staining protocols and scoring methods.

- Analysis of 100 breast cancer cases based on a TMA.
- Assessment of intra- and interlaboratory agreement based on the intraclass correlation coefficient (ICC) ranging from 0 (lowest) to 1 (highest agreement).

### Experiments

Intralaboratory Reproducibility



Interlaboratory Reproducibility

#### **Experiment 2**

- A: central staining, local scoring
- B: local staining, local scoring

### **Results Experiment 1**

Intralaboratory Reproducibility



### Intraclass Correlation Coefficient (ICC) = 0.94

## **Results Experiment 2**

Interlaboratory Reproducibility



ICC = 0.71 Range of the geometric mean: 10% - 28% **ICC = 0.59** Range of the geometric mean: 6.1% - 30.1%

## Conclusions

 Significant lack of standardized methodology of proliferation assessment (time/type of fixation, storage, antibody, staining, evaluation, cut-off definition, ...).

 $\rightarrow$  difficult to compare studies and to draw definitive conclusions.

- There is accumulating evidence that assessment of proliferation is of prognostic value for early stage adenocarcinomas.
  → further studies required (mitosis vs. Ki-67).
- No sufficient evidence to support proliferation assessment in squamous cell carcinomas.
- No sufficient evidence to support microscopic proliferation assessment as a predictive biomarker.

 $\rightarrow$  gene expression profiles are promising.

### <u>Perspective:</u> Implementation of Proliferation Assessment into Routine Diagnosis of Adenocarcinoma

- 1. Clinical consequences.
- 2. Integration of staging and morphology.
- 3. International establishment of reliable and reproducible staining/evaluation protocols.
- 4. Integration of morphology and proliferation.



Warth A et al. J Clin Oncol. 2012,30:1438-46.

olid

Cribriform



## Thank you...



#### ..... for your attention!