Professor Suresh Senan
VU University Medical Center, Amsterdam
Tumor volume and survival

Radiation dose distribution and toxicity

Radiotherapy in mesothelioma

Isolated brain failures in LA-NSCLC

38PD: Dirk De Ruysscher (on behalf of Gilles Defraene)

156PD: Angela Botticella

82PD: Judi van Diessen
Tumor volume and survival in stage III NSCLC

- Radiotherapy plus low-dose cisplatin in 226 patients (2007-2011)
- Primary tumor and involved lymph nodes contoured
- Perf score, age, histology, gender, volume of primary tumor and SUVmax were tested as prognostic factors.
- Only significant factor for OS was the primary tumor volume (HR 1.002, p<0.001).

<table>
<thead>
<tr>
<th></th>
<th>Tumor volume < 40 cc</th>
<th>Tumor volume ≥ 40 cc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR (%)</td>
<td>1-year</td>
<td>6,5</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>2-year</td>
<td>17,8</td>
<td>33,5</td>
</tr>
<tr>
<td>OS (%)</td>
<td>1-year</td>
<td>87,4</td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>2-year</td>
<td>68,5</td>
<td>48,1</td>
</tr>
</tbody>
</table>

82PD van Diessen J. ELCC 2015
Tumor size and survival (TROG 99.05)

- Prospective observational study in 509 patients
- 280 stage III patients (gross tumor volumes ≥ 270 cc in 8%)
- **Primary tumor** volume prognostic for **survival** only in 1st **18 months**, even after allowing for effects of T- and N- status.
- Similar proportion of long-term survivors in all quartiles.
Stage III NSCLC: Volume effect

- **Tumor volume** (PTV) and median overall survival (OS) after concurrent CT-RT

 - $< 350 \, \text{cm}^3$ (n = 17), OS 35.6 months
 - 350 – 700 $\, \text{cm}^3$ (n = 85), OS 24.2 months
 - 700 – 1050 $\, \text{cm}^3$ (n = 52), OS 15.7 months
 - $> 1050 \, \text{cm}^3$ (n = 36), OS 10.3 months

van Reij, Acta Oncol 2013
Concurrent CT-RT for large tumors

Single institution:
• 121 patients
• Planning Target Vol (PTV) >700cc (± N3) or PTV <700cc and N3

Toxicity: Gr ≥3 pneumonitis – 4%

Wiersma T, Lung Cancer 2013
Tumor volume and survival in stage III NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Tumor volume < 40 cc</th>
<th>Tumor volume ≥ 40 cc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR (%)</td>
<td>1-year</td>
<td>6,5</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>2-year</td>
<td>17,8</td>
<td>33,5</td>
</tr>
<tr>
<td>OS (%)</td>
<td>1-year</td>
<td>87,4</td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>2-year</td>
<td>68,5</td>
<td>48,1</td>
</tr>
</tbody>
</table>

- Investigate dose-painting (for dose redistribution) in a randomized phase II PET-boost trial in patients with a minimum primary tumor size of 4 cm (33 cc).

82PD van Diessen J. ELCC 2015

Surgery alone = 49%
Radiation alone = 24%
Surgery + radiation = 10%
No surgery or radiation = 15%

Larger primary tumor size associated with inferior survival in early stage NSCLC, in locally advanced disease, and in patients with extensive N disease

Zhang J, JTO 2015
Tumor volume and survival (SEER)

Zhang J, JTO 2015
• CT₀ characteristic, i.e. median density HU₀, appears to be a surrogate of radiosensitivity

• Denser subregions show a trend towards higher radiosensitivity (p=0.07)
Avoiding radiation-induced lung damage

• Methodology
 • 110 stage I-IV patients (30 from an external validation set)
 • Compare planning CT₀ and fup CT₃M : local **density changes (HU₃M-HU₀)**

• Results
 – **Sigmoidal dose response** relation: described by D₅₀ (position) and ΔHUₘₐₓ (saturation) for each patient

• Advantages over classical lung toxicity endpoints (e.g. QUANTEC)
 • Less multifactorial endpoint
 • Successful external validation (similar distributions of D₅₀ and ΔHUₘₐₓ)
 • Simple CT₀ characteristic, i.e. median density HU₀, is surrogate of radiosensitivity
 • Predicts for ΔHUₘₐₓ (p=0.003) between patients

38PD Defraene G, ELCC 2015
Randomised phase II trial

- Hypothesis: redistribution of radiation dose, sparing most sensitive lung regions, will reduce grade ≥2 radiation pneumonitis

Primary endpoint: incidence of grade 2-5 radiation pneumonitis (CTCAE 4.0) within 90 days after the end of radiotherapy.

Secondary endpoints: incidence of grade 2-4 cough (CTCAE 4.0), pulmonary function changes, overall survival, quality of life, identification of CT characteristics that improve the prediction model

38PD Defraene G, ELCC 2015
Hyperpolarised 3He MRI

STUDY PROTOCOL

Functional lung avoidance for individualized radiotherapy (FLAIR): study protocol for a randomized, double-blind clinical trial

Patients with Stage III NSCLC undergoing Concurrent Chemoradiotherapy

≥10 Pack-Year Smoking History

MRI with inhaled contrast

RANDOMIZATION

ARM 1

STANDARD RADIOThERAPY

FOLLOW-UP

QOL, Toxicity, Survival Outcomes

ARM 2

FUNCTIONAL LUNG AVOIDANCE RADIOThERAPY

FOLLOW-UP

QOL, Toxicity, Survival Outcomes

Figure 1 Study design: patients will be randomized in a 1:1 ratio between Arm 1 (standard radiotherapy) and Arm 2 (functional lung avoidance radiotherapy).

Hoover et al. BMC Cancer 2014, 14:934
4DCT-based fractional regional ventilation

Slide courtesy of Mistry N (see Mistry N, IJROBP 2013)
Fractional regional ventilation shown in axial slice for 3 different breathing maneuvers: (a) free breathing (FB), (b) audiovisual guidance (AV), and (c) active breathing control (ABC).

Mistry N, IJROBP 2013
Radiotherapy in mesothelioma.

• High-dose radiotherapy following extra-pleural pneumonectomy has been out of favour in Europe since results of MARS [Treasure T, Lancet Oncol 2011] and SAKK17/04 trial [Stahel R, ESMO 2014]

• Hemi-thorax radiotherapy after pleurectomy, or even in situ, is being explored
 – Why was RT ineffective? target coverage, toxicity
 – Role of newer techniques [VMAT, protons]
Table 2 Failure types and patterns

<table>
<thead>
<tr>
<th>Failure type</th>
<th>All patients (N=67)</th>
<th>Patients undergoing surgery (n=42)</th>
<th>Unresectable cases (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
<td>Number</td>
</tr>
<tr>
<td>Locoregional failures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>In-field</td>
<td>43</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Previous involved site</td>
<td>32</td>
<td>48</td>
<td>14</td>
</tr>
<tr>
<td>New site</td>
<td>11</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Marginal</td>
<td>13</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Out-of-field</td>
<td>25</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>Fissure</td>
<td>11</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Distant</td>
<td>32</td>
<td>48</td>
<td>18</td>
</tr>
<tr>
<td>Failure patterns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local only</td>
<td>9</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Local and regional</td>
<td>8</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Local and distant</td>
<td>10</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Local, regional, and distant</td>
<td>16</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Regional only</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Regional and distant</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Distant only</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Pattern-of-failure analysis in MPM

- 67 patients with malignant pleural mesothelioma (MPM)
- All were unresectable or underwent pleurectomy/decortication
- All received hemithoracic pleural IMRT (2004-2013)

- 64% in-field local failures (64%)

Rimner A, IJROBP 2014
• After P/D versus those who received a partial pleurectomy or were deemed unresectable, the median time to in-field local failure was 14 months versus 6 months, respectively,

• 1- and 2-year actuarial in-field local failure rates of 43% and 60% versus 66% and 83%, respectively (P=.03).

• 19% marginal failures (n=13), with 5 in costomediastinal recess.

• 37%) had out-of-field failures.

• 48% had distant failures

Rimner A, IJROBP 2014
Hemithoracic lung-sparing volumetric modulated arc therapy (VMAT) for malignant mesothelioma

AIM:
• To optimize target definition and treatment planning in lung-sparing VMAT for malignant mesothelioma

METHODS:
• 16 stage I-IV MPM patients included (retrospectively identified from an Institutional dataset)

➢ CONTOURING PHASE
1. Rigid co-registration between CT and 18FDG-PET/CT and CT and MRI (T1, T2)
2. 3 sets of gross tumour volumes (GTV) identified: GTV_{CT}, GTV_{CT+PET/CT}, and GTV_{CT+MRI}
3. “Qualitative” and “quantitative” evaluation of the GTVs performed

156PD: Angela Botticella ELCC 2015
Hemithoracic lung-sparing volumetric modulated arc therapy (VMAT) for malignant mesothelioma

- **PLANNING PHASE**

1. GTV with the highest rate of newly-identified tumour sites was chosen to generate the PTV
2. 12 patients - first 6 consecutive left-sided and right-sided
3. VMAT plans for all patients
4. Prescription dose: 50 Gy in 2-Gy fractions, and progressive dose-escalation steps with 4 Gy increment were attempted

156PD: Angela Botticella ELCC 2015
Hemithoracic lung-sparing volumetric modulated arc therapy (VMAT) for malignant mesothelioma

RESULTS - CONTOURING PHASE:
- MRI identified additional tumour sites in 15/16 patients compared to either CT or PET/CT
- PET/CT identified additional tumour sites in 12/16 patients
- Differences in mean volumes mild and not significant (range: 5-6%)

No significant volume increase + potentially lower risk of geographical miss = MRI-based volumes were selected for the planning phase

156PD: Angela Botticella ELCC 2015
Hemithoracic lung-sparing volumetric modulated arc therapy (VMAT) for malignant mesothelioma

RESULTS - PLANNING PHASE:

• For 10/12 patients, a 50 Gy VMAT plan was possible
• Max achievable dose:
 o 54 Gy → 7 patients
 o 58 Gy → 4 patients
 o 62 Gy → 1 patient
• Correlation at multivariate analysis between the ratio contralateral/ipsilateral lung volume and PTV/total lung volume (p=0.05)

MRI-based target definition in lung-sparing VMAT for pleural mesothelioma may improve the accuracy of GTV delineation

A higher ratio of contralateral/ipsilateral lung volume and lower ratio of PTV/total lung volume less likely to achieve therapeutic doses

156PD: Angela Botticella ELCC 2015
Hemithoracic lung-sparing volumetric modulated arc therapy (VMAT) for malignant mesothelioma

• First report showing that MRI-based target definition may improve the accuracy of GTV delineation and thus reduce the probability of geographical misses.