Tumours with Squamous Differentiation: What are the Issues?

Ming S. Tsao, MD, FRCPC

M. Qasim Choksi Chair in Lung Cancer Translational Research
Princess Margaret Cancer Centre
University of Toronto

Disclosure

No conflict related to subject under discussion

Issues for Discussions

- 1. Major changes in 2015 classification
- 2. Definition and diagnostic markers
- 3. Basaloid carcinoma
- 4. Primary vs. metastasis
- 5. Molecular classification and insights

2004 (3rd Edition) of WHO Classification

Squamous cell carcinoma

- Papillary carcinoma
- Clear cell carcinoma
- Small cell carcinoma
- Basaloid carcinoma

Preinvasive lesions

- Squamous carcinoma in situ
- Atypical adenomatous hyperplasia
- DIPNECH

Large cell carcinoma

- Large cell neuroendocrine carcinoma
- Basaloid carcinoma
- Lymphoepithelioma-like carcinoma
- Clear cell carcinoma
- Large cell carcinoma with rhabdoid phenotype

2004 (3rd Edition) of WHO Classification

Squamous cell carcinoma

- Papillary carcinoma
- Clear cell carcinoma
- Small cell carcinoma
- Basaloid carcinoma

Preinvasive lesions

- Squamous carcinoma in situ
- Atypical adenomatous hyperplasia
- **DIPNECH**

Large cell carcinoma

- Large cell neuroendocrine carcinoma
- Basaloid carcinoma
- Lymphoepithelioma-like carcinoma
- Clear cell carcinoma
- Large cell carcinoma with rhabdoid phenotype

2004 (3rd Edition) of WHO Classification

Squamous cell carcinoma

- Papillary carcinoma
- Clear cell carcinoma
- Small cell carcinoma
- Basaloid carcinoma

Preinvasive lesions

- Squamous carcinoma in situ
- Atypical adenomatous hyperplasia
- DIPNECH

Large cell carcinoma

- Large cell neuroendocrine carcinoma
- Basaloid carcinoma
- Lymphoepithelioma-like carcinoma
- Clear cell carcinoma
- Large cell carcinoma with rhabdoid phenotype

2015 (4th Edition) of WHO Classification

- Squamous cell carcinoma
 - Keratinizing squamous cell carcinoma
 - Non-keratinizing squamous cell carcinoma
 - Basaloid squamous cell carcinoma
 - Preinvasive lesion:
 - Squamous cell carcinoma in situ

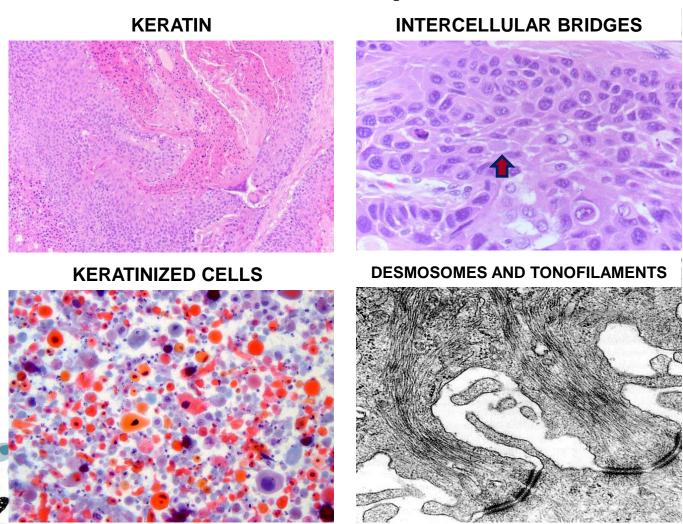
Definition of Squamous Cell Carcinoma

2004 (3rd Edition)

A malignant epithelial tumour showing keratinization and/or intercellular bridges that arises from bronchial epithelium

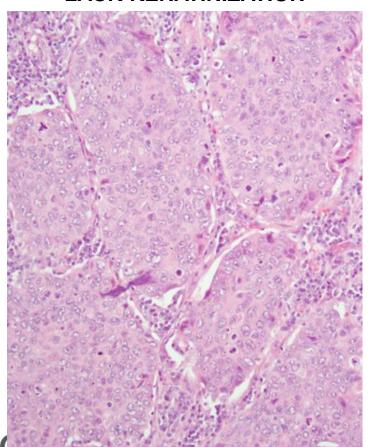
2015 (4th Edition)

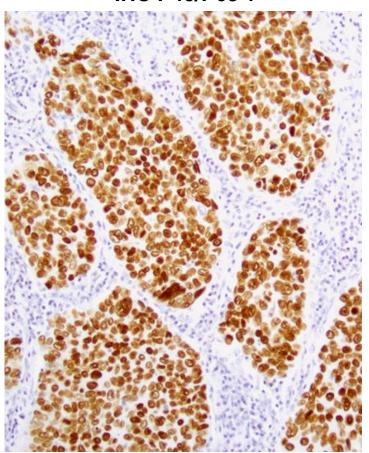
Malignant epithelial tumour that either shows keratinization and/or intercellular bridges, or is a morphologically undifferentiated non-smal I carcinoma that expresses immunohistochemical markers of squamous cell differentiation



Cytological and Morphological Features of Differentiated Squamous Cells

Organisers





Non-Keratinizing Squamous Cells

LACK KERATINIZATION

IHC P40/P63 +

Sensitivity and Specificity of P63 and CK5/6 for Squamous Cell Carcinoma

Source	Marker (staining)	Sensitivity	Specificity	PPV	NPV	AUC
Loo	P63 (2+/>10%)	92%	74%	82%	88%	-
Terry	P63 (any)	84%	85%	86%	82%	0.84
Rekhtman	P63 (diffuse)	99%	96%	-	-	0.99
Pelosi	P63 (≥25%)	-	-	-	-	1.00
Bishop	P40 (≥ 5%)	100%	100%	100%	100%	-
Loo	CK5/6 (2+/>10%)	84%	79%	84%	79%	-
Terry	CK5/6 (any)	66%	95%	94%	72%	-
Rekhtman	CK5/6 (diffuse)	90%	97%	-	-	0.97
Pelosi	CK5/6 (≥25%)	-	-	-	-	1.00

elcc

15-18 April 2015, Geneva, Switzerland

IASLC

Loo et al, JTO 2010; Terry et al, AJSP 2010; Rekhtman et al, JTO 2011; Pelosi et al, JTO 2011; Bishop JT et al, Mod Pathol 2012.

Table 1.20 Immunohistochemical typing of cytokeratin-positive, morphologically undifferentiated non-small cell lung carcinoma (NSCLC), with mucin stains already undertaken to exclude solid pattern adenocarcinoma^a. Focal: 0–10% of cells positive; diffuse: > 10% of cells positive.

	TTF1 ^b p63		nau Lach		Diagnosis (resection)	Diagnosis (biopsy / cytology)
	Positive (focal or diffuse)	Negative	Negative	Negative Negative		NSCLC, favour adenocarcinoma
	Positive (focal or diffuse)	Positive (focal or diffuse)	Negative	Negative	Adenocarcinoma	NSCLC, favour adenocarcinoma
	Positive Positive (focal or diffuse)		Positive (focal)	Negative	Adenocarcinoma	NSCLC, favour adenocarcinoma
	Positive (focal or diffuse)	Negative	Negative	Negative Positive (focal)		NSCLC, favour adenocarcinoma
	Negative	Any one of	f the above diffusely	positive	Squamous cell carcinoma	NSCLC, favour squamous cell carcinoma
	Negative	Any one o	of the above focally	positive	Large cell carcinoma, unclear ^c	NSCLC, not otherwise specified
	Negative	Negative	Negative	Negative	Large cell carcinoma-null ^d	NSCLC, not otherwise specified
	No stains available	No stains available	No stains available	No stains available	Large cell carcinoma with no additional stains	NSCLC, not otherwise specified (no stains available)

2015 WHO Classification Book, Page 83

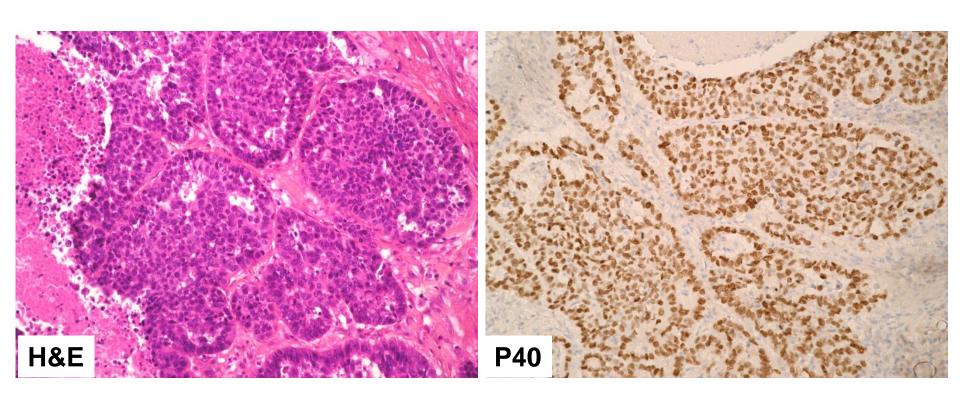
Basaloid Squamous Cell Carcinoma

DEFINITION: A poorly differentiated malignant epithelial tumour that presents in its pure form as a *proliferation of small cells with lobular architecture and peripheral palisading*. These cells lack squamous morphology, but *show immunohistochemical expression of squamous markers*. Tumours with a keratinizing or non-keratinizing squamous cell component, but a basaloid component of >50%, are also classified as basaloid carcinoma. This tumour was previously considered a variant of large cell carcinoma, but was recognized as a distinct entity in the 1999 and 2004 WHO classifications.

- High mitotic rate (Ki-67 50-80%)
- Positive for p40/p63, CK5/10/14
- Negative for TTF1, CD56, chromogranin, synaptophysin

15-18 April 2015, Geneva, Switzerland

IASLC ...



Brambilla E *et al, Hum Pathol. 1992;23:993-1003;* Marci V *et al, Virchows Arch. 2007;451:729-36;* Moro-Sibilot D *et al. Eur Respir J. 2008;31:854-9.*

Morphological Features of Basaloid Squamous Cell Carcinoma

Lung carcinomas with a basaloid pattern: a study of 90 cases focusing on their poor prognosis

D. Moro-Sibilot*,**, S. Lantuejoul*,**, S. Diab*, N. Moulai**, A. Aubert*,*, J.F. Timsit*,**, C. Brambilla*,**, P.Y. Brichon*,* and E. Brambilla*,**

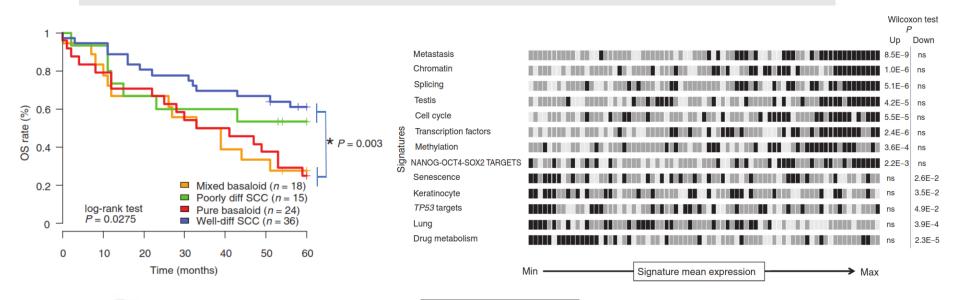
In third edition (2004) WHO Classification

- LCC variant: pure basaloid classified under large cell carcinoma
- SCC variant: Presence of squamous differentiation in <50%
- 1979-2003: 90 of 1418 NSCLCs were classified as:
 - Basaloid carcinoma (n=46)
 - Basaloid variant of squamous cell carcinoma (n=44)

Eur Respir J 2008;31:854-59

Basaloid Carcinoma: A distinct entity

	Stages	Survival	5-yr survival	P-value
	All	os	26 vs. 38	0.05
Basaloid CA	All	DFS	41 vs. 59	0.014
<i>vs</i> Non-basaloid	I-II	OS	27 vs. 44	0.01
	I-II	DFS	45 vs. 65	0.008
(SCC/ADC/LC)	l	OS	33 vs. 51	0.01
Basaloid CA	All	OS	26 vs. 37	0.15
VS	All	DFS	41 vs. 61	0.005
Squamous CA	I	OS	33 vs. 51	0.02



Lung Squamous Cell Carcinomas with Basaloid Histology Represent a Specific Molecular Entity

Christian Brambilla¹, Julien Laffaire², Sylvie Lantuejoul³, Denis Moro-Sibilot¹, Hélène Mignotte¹, François Arbib¹, Anne-Claire Toffart¹, Fabien Petel², Pierre Hainaut⁴, Sophie Rousseaux⁵, Saadi Khochbin⁵, Aurélien de Reyniès², and Elisabeth Brambilla³

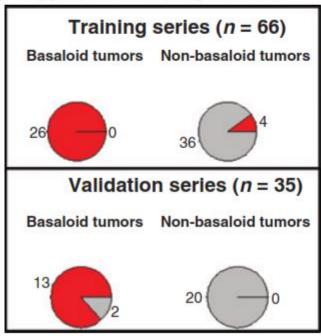
93 SCC: 24 pure basaloid, 18 basaloid/SCC, 36 WD SCC, 15 PD SCC

15-18 April 2015, Geneva, Switzerland

Clin Cancer Res 2014;20:5777-86

■ Pure basaloid carcinoma (n = 24)
■ Well-differentiated SCC (n = 36)
□ Poorly differentiated SCC (n = 15)

A Predictor Non-basaloid <50 QS(SOX4) [50;110] QS(SOX4)


-QS(IVL)

Basaloid

≥-55

B Application of the predictor

≥110

INVOLUCRINE (INL)

Basaloid SCC

Brambilla C, et al. Clin Cancer Res 2014;20:5777-86

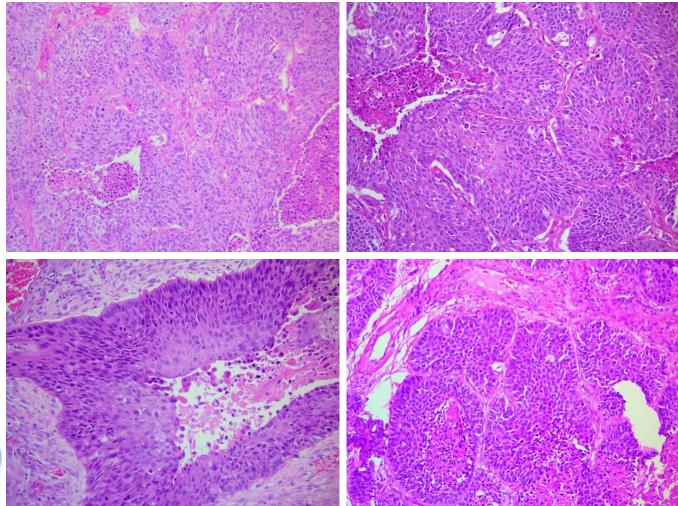
15-18 April 2015, Geneva, Switzerland

Non-basaloid SCC

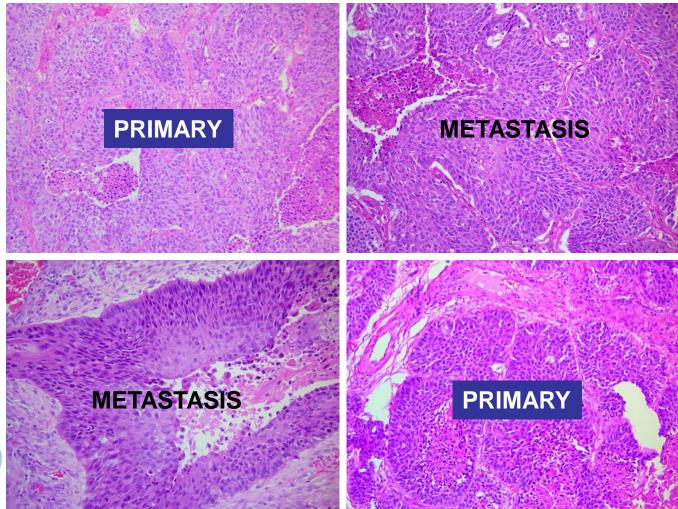
Primary vs. Metastasis

Potential primary origins of metastasis:

- Recurrence from previous lung SCC
- Metastases from other disease site:
 - Head & Neck
 - Esophagus
 - Cervix
 - Bladder (urothelial)



Primary vs Metastatic SCC on H&E Sections



Primary vs Metastatic SCC on H&E Sections

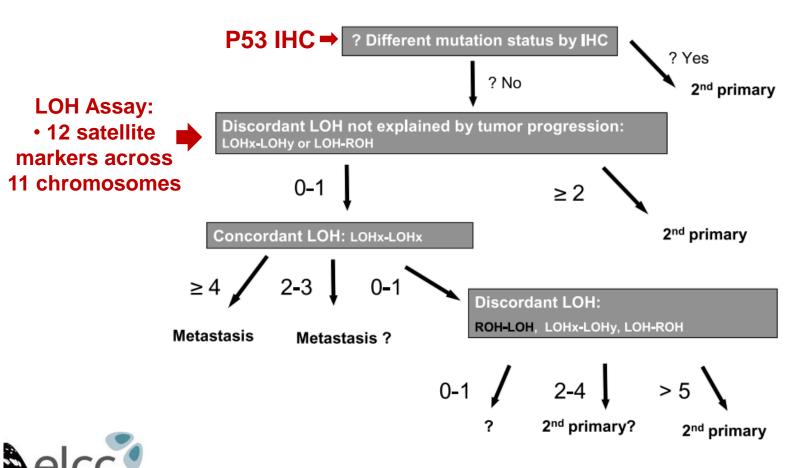
Selective Immunohistochemical Markers to Distinguish Between Metastatic High-Grade Urothelial Carcinoma and Primary Poorly Differentiated Invasive Squamous Cell Carcinoma of the Lung

Aaron M. Gruver, MD, PhD; Mahul B. Amin, MD; Daniel J. Luthringer, MD; Danielle Westfall, MD; Komal Arora, MD; Carol F. Farver, MD; Adeboye O. Osunkoya, MD; Jesse K. McKenney, MD; Donna E. Hansel, MD, PhD

	Primary Invasive Bladder UCa, %	Primary Pulmonary SCC, %
Immunostain	$(n = 37)^a$	(n = 30)
CK7	100	33
CK20	54	7
HMCK	92	100
GATA-3	78	23
Napsin A	8	3
p63	78	93
S100A1	0	20
S100P	76	53
Surfactant protein A	0	0
Thrombomodulin	81	97
TTF-1	0	3
Uroplakin III	14	0
CK14	32	77
Desmoglein-3	11	87

15-18 April 2015, Geneva, Switzerland

Arch Pathol Lab Med 2012;136:1339-46

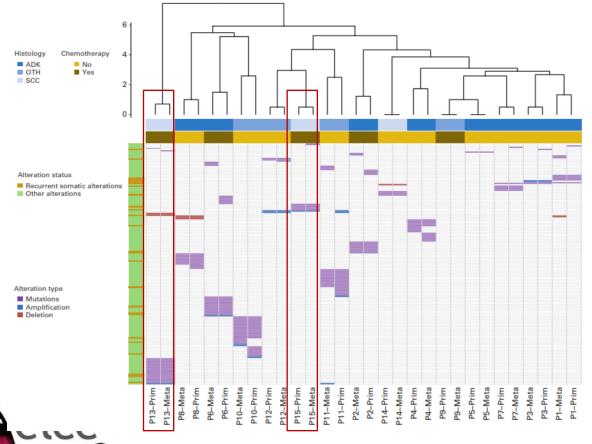


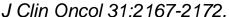
Differential Diagnosis of Pulmonary Carcinoma Following Head and Neck Cancer by Genetic Analysis

N. van Zandwijk, ² H. van Tinteren, ³ P. Nederlof, ⁴ A.J.M. Balm, ^{1,5} and R.H. Brakenhoff ⁶

15-18 April 2015, Geneva, Switzerland

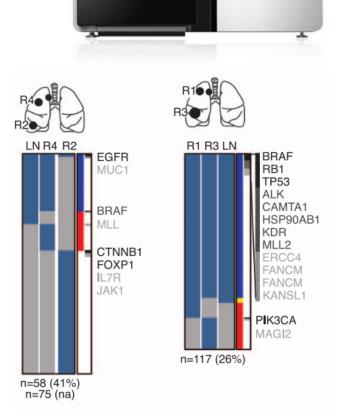
Organisers


Clin Cancer Res 2005:6608-14 Clin Cancer Res 2009;15:980-85



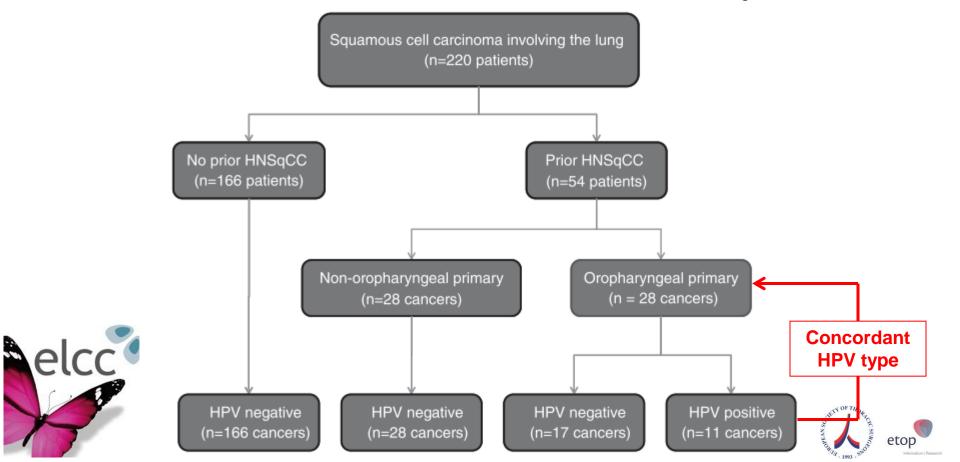
Next-Generation Sequencing Reveals High Concordance of Recurrent Somatic Alterations Between Primary Tumor and Metastases From Patients With Non-Small-Cell Lung Cancer

Stéphane Vignot, Garrett M. Frampton, Jean-Charles Soria, Roman Yelensky, Frédéric Commo, Christian Brambilla, Gary Palmer, Denis Moro-Sibilot, Jeffrey S. Ross, Maureen T. Cronin, Fabrice André, Philip J. Stephens, Vladimir Lazar, Vincent A. Miller, and Elisabeth Brambilla



Organisers

De Bruin EC, et al. Science 2014:346:251-9



HPV Analysis in Distinguishing Second Primary Tumors From Lung Metastases in Patients With Head and Neck Squamous Cell Carcinoma

Justin A. Bishop, MD,* Takenori Ogawa, MD, PhD,† Xiaofei Chang, MD, PhD,†
Peter B. Illei, MD,* Edward Gabrielson, MD,*‡ Sara I. Pai, MD, PhD,†‡ and
William H. Westra, MD*†‡
Am J Surg Pathol. 2012;36:142-8

Molecular HPV Typing as a Diagnostic Tool to Discriminate Primary From Metastatic Squamous Cell Carcinoma of the Lung

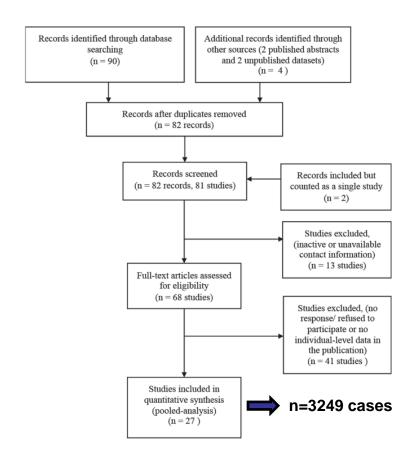
Wilko Weichert, MD,* Christiane Schewe, PhD,* Carsten Denkert, MD,* Lars Morawietz, MD,* Manfred Dietel, MD,* and Iver Petersen, MD†

Conclusion: HPV typing is very useful diagnostic tool to discriminate primary from metastatic squamous cell carcinoma of the lung

Reported Detection of HPV DNA Sequences in NSCLC

	North America	Asia- Pacific	Europe	South America	Total		
No. of reports	4	25	16	2	46		
NSCLC	265	2118	1416	105	3707		
HPV Positive	3.0%	33.9%	10.5%	28.6%	24.3%		
Range	0-11%	0-78.3%	0-69.2%	27.8-29.0%			
	Sq	uamous cell	carcinoma				
Number studied	96	1108	481	51	1674		
HPV Positive	7.3%	36.2%	21.2%	41.2%	31.4%		
		Adenocard	inoma				
Number studied	102	453	188	45	686		
HPV Positive	0	19.2%	14.9%	13.3%	17.6%		
Large cell carcinoma							
Number studied	29	3	18	NA	21		
HPV Positive	3.5%	33.3%	22.2%	NA	23.8%		

Yanagawa N, et al, Lung Cancer 2013; 79:215-220



HPV-associated lung cancers: an international pooled analysis

C Ragin, M Obikoya-Malomo, S Kim, Z Chen, et al.

	Adjusted Prevalence (95% CI)							
	Asia	Europe	SA/CA	NA				
No. of cases	1312	1100	105	732				
	(40%)	(34%)	(3%)	(23%)				
HPV	4.6	3.03	21.90	3.78				
16/18	(3.48-5.73)	(2.76-3.30)	(19.61-24.20)	(3.35-4.22)				
HPV 16	1.49	2.94	19.18	2.03				
	(0.86-2.11)	(2.68-3.21)	(16.88-21.49)	(1.68-2.39)				
HPV 18	1.09	0.82	7.78	2.49				
	(0.66-1.52)	(0.73-0.92)	(6.61-8.95)	(2.23-2.75)				

Landscape of DNA Virus Associations across Human Malignant Cancers: Analysis of 3,775 Cases Using RNA-Seq

Joseph D. Khoury, Nizar M. Tannir, Michelle D. Williams, Yunxin Chen, Hui Yao, Jianping Zhang, Erika J. Thompson, the TCGA Network, Funda Meric-Bernstam, L. Jeffrey Medeiros, John N. Weinstein, Xiaoping Su

Departments of Hematopathology, a Genitourinary Medical Oncology, Pathology, Bioinformatics and Computational Biology, Genetics, Investigational Cancer Therapeutics, and Surgical Oncology, MD Anderson Cancer Center, Houston, Texas, USA

Elucidation of tumor-DNA virus associations in many cancer types has enhanced our knowledge of fundamental oncogenesis mechanisms and provided a basis for cancer prevention initiatives. RNA-Seq is a novel tool to comprehensively assess such associations. We interrogated RNA-Seq data from 3,775 malignant neoplasms in The Cancer Genome Atlas database for the presence of viral sequences. Viral integration sites were also detected in expressed transcripts using a novel approach. The detection capacity of RNA-Seq was compared to available clinical laboratory data. Human papillomavirus (HPV) transcripts were detected

	Tumor type	No. of samples analyzed
	Breast carcinoma	750
	Clear cell renal cell carcinoma	460
	Ovarian serous cystadenocarcinoma	419
	Uterine corpus endometrioid carcinoma ^a	254
	Head-and-neck squamous cell carcinoma	239
V.	Lung adenocarcinoma	225
7	Lung squamous cell carcinoma	219
	Cutaneous melanoma	214
	Acute myeloid leukemia	179
	Glioblastoma	168
	Thyroid carcinoma	157
	Colon adenocarcinoma ^a	138
	Gastric adenocarcinoma	71
	Rectal adenocarcinoma ^a	66
	Prostate adenocarcinoma	53
(Papillary renal cell carcinoma	47
-	Lower-grade glioma	47
	Hepatocellular carcinoma	69

HPV viral transcript detected tumors							
	No. tumors studied	HPV + cases (%)					
Head and Neck SCC	239	36 (15.06%)					
Lung SCC	219	1 (0.5%)					
Endometrial carcinoma	253	1 (0.4%)					

Patient had past hx of HPV + oropharyngeal SCC

J Virol 87(16):8916-26

Human papilloma virus genome is rare in North American non-small cell lung carcinoma patients Lung Cancer 2013; 79:215-220

Naoki Yanagawa^a, Ami Wang^a, Derek Kohler^a, Gilda da Cunha Santos^{a,c}, Jenna Sykes^b, Jing Xu^a, Melania Pintilie^b, Ming-Sound Tsao^{a,c,*}

P16 staining	HPV+ (%)	HPV – (%)	P value
High expression (++)	5 (100%)*	104 (30.9%)	
Normal-like (+)	0	28 (8.3%)	0.004
Negative (-)	0	199 (60.8%)	
Squamous Cell Carcinoma	5	127	
Adenocarcinoma	0	204	

* All type 16

Cas	e Lung Surgery	-30 X	Smoking History	Stage	Size (cm)	Location	Other Prior Malignancy	Diagnosis	Tumor histology	Grade	Stage	HPV status	Treatment
1	Apr-03	M	Smoker	pT4N2	8	peripheral	Base of tongue	Oct-00	Sqcc	MD	pT2N3 (4B)	+	Hemimandibulectomy + radical neck dissection
2	Feb-06	F	Never	pT2bN2	5.5	peripheral	Cervix	Nov-01	Sqcc	NA	c2B	+	Chemoradiation
3	Feb-07	F	Never	pT1aN0	2	peripheral	Endocervix	Aug-05	Sqcc	PD	c-2B	NA	Chemoradiation
4	Mar-08	M	Never	pT2aN0	3.5	central	Oropharynx	May-07	Sqcc	MD	pT4aN2b (4B)	NA	Chemoradiation + Neck dissection
5	Mar-08	F	Smoker	pT2bN1	6	peripheral	Cervix	Sep-03	Sqcc	MD	pT1bN0 (1B)	NA	LEEP + chemoradiation

Importance of Determining Role of HPV in Lung Carcinoma

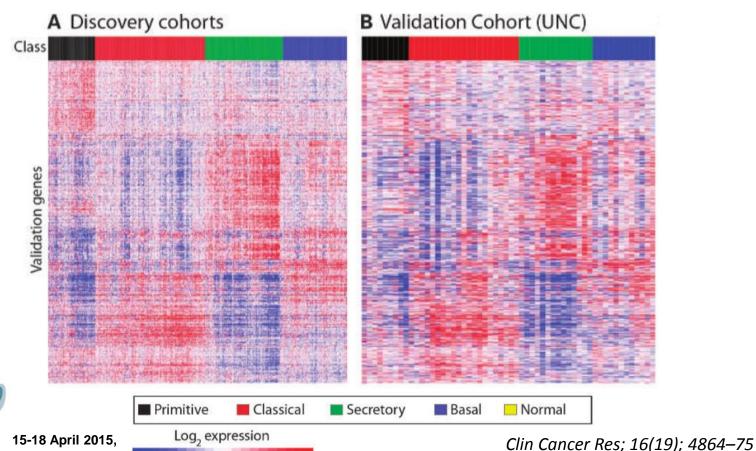
- 1. In oropharynx, HPV+ cancer represents a different disease with much better prognosis (Fakhry C, et al. J Natl Cancer Inst 2008;100: 261–69; Rischin D, et al. J Clin Oncol 2010;28:4142-8.)
- 2. Distinguishing primary vs metastatic nature of HPV+ lung carcinoma

Other key references:

- Klein F, et al. Incidence of human papilloma virus in lung cancer. Lung Cancer 2009;65:13-18.
- Koshiol J, et al. Assessment of human papillomavirus in lung tumor tissue. J Natl Cancer Inst 2011;103:501-507.

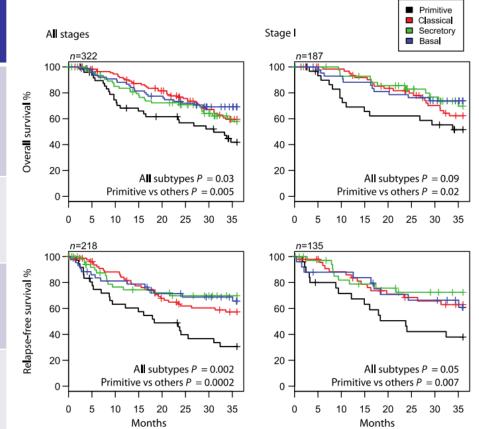
HPV and Lung Cancer (Summary)

- HPV determination and typing is useful to distinguish primary from metastasis in lung cancer patients with past history of H&N or Cervical cancer
- 2. In this situation, P16 IHC cannot be used as a surrogate marker for HPV assay
- 3. There is an urgent need to conduct an international molecular epidemiological study to re-evaluate the role of HPV in lung cancer, using stringently controlled and robust assays



Lung Squamous Cell Carcinoma mRNA Expression Subtypes Are Reproducible, Clinically Important, and Correspond to Normal Cell Types

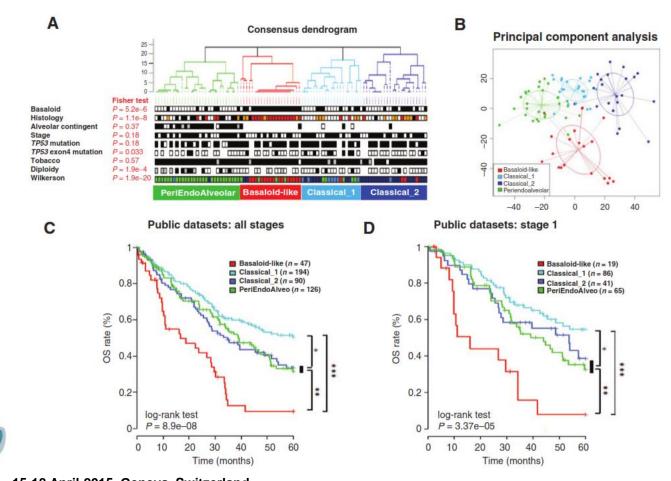
Matthew D. Wilkerson¹, Xiaoying Yin¹, Katherine A. Hoadley^{1,2}, Yufeng Liu^{3,4}, Michele C. Hayward¹, Christopher R. Cabanski³, Kenneth Muldrew⁵, C. Ryan Miller^{1,5}, Scott H. Randell^{1,6}, Mark A. Socinski^{1,7}, Alden M. Parsons⁷, William K. Funkhouser^{1,5}, Carrie B. Lee^{1,7}, Patrick J. Roberts¹, Leigh Thorne^{1,5}, Philip S. Bernard⁸, Charles M. Perou^{1,2}, and D. Neil Hayes^{1,7}



IASLC

Lung Squamous Cell Carcinoma mRNA Expression Subtypes Are Reproducible, Clinically Important, and Correspond to Normal Cell Types

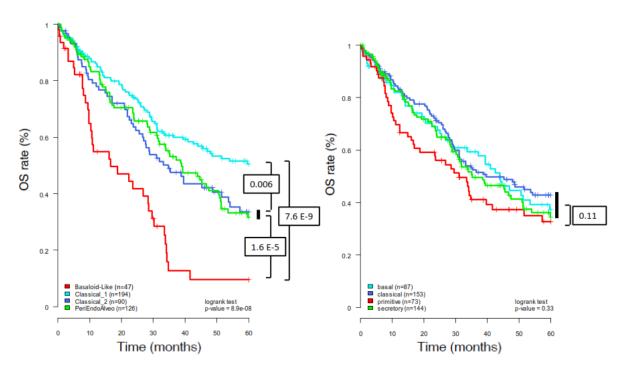
Expression subtype	Enriched Pathway	Model system
Primitive	Proliferation, RNA processing, DNA repair	Mouse early lung development
Classical	Energy and xenobiotics metabolism	No specific model
Secretory	Immune response	Normal lung: LCM submucosal glands
Basal	Cell adhesion, epidermal development	Basal cell phase of HBEC-air surface interface culture



Lung Squamous Cell Carcinomas with Basaloid Histology Represent a Specific Molecular Entity

Christian Brambilla¹, Julien Laffaire², Sylvie Lantuejoul³, Denis Moro-Sibilot¹, Hélène Mignotte¹, François Arbib¹, Anne-Claire Toffart¹, Fabien Petel², Pierre Hainaut⁴, Sophie Rousseaux⁵, Saadi Khochbin⁵, Aurélien de Reyniès², and Elisabeth Brambilla³

Brambilla C, et al. Clin Cancer Res 2014;20:5777-86

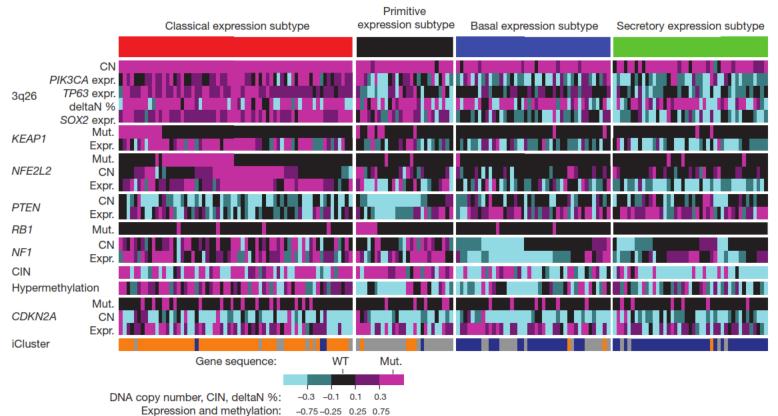


			Wilkerson molecular subtypes (prediction)						
			basal	classical	primitive	secretory			
ılar	s In)	Basaloid-Like	6	3	57	12			
molecula	ubtypes rediction	Classical_1	73	111	18	37			
		Classical_2	8	94	27	0			
CIT	ී ල	PeriEndoAlveo	19	4	2	155			

CIT subtypes in public datasets

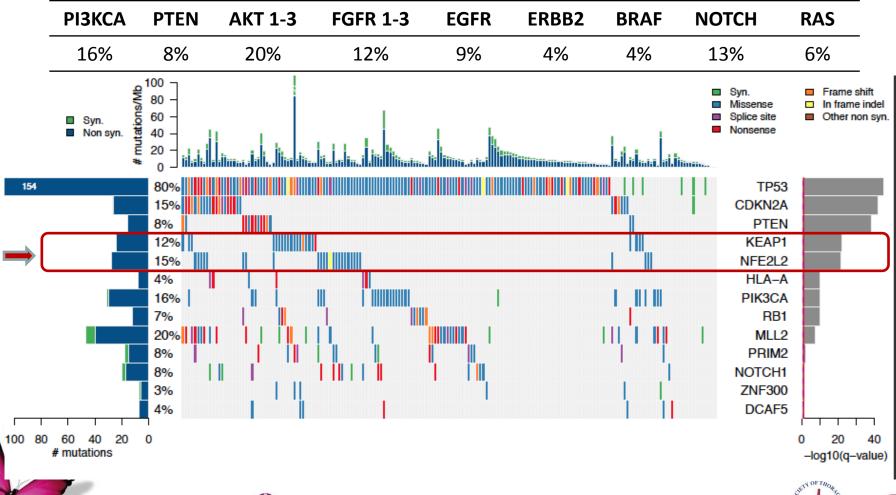
Wilkerson subtypes in public datasets

Brambilla C, et al. Clin Cancer Res 2014;20:5777-86



Comprehensive genomic characterization of squamous cell lung cancers

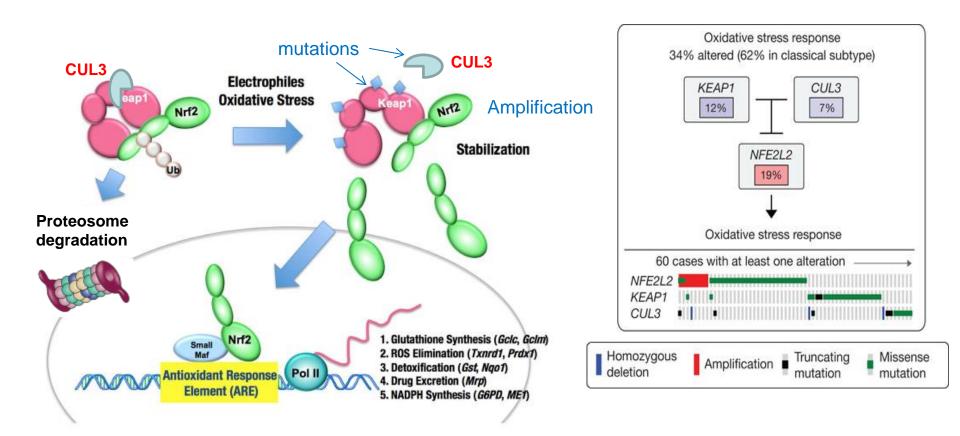
The Cancer Genome Atlas Research Network*



Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network*

Potentially Targetable Mutated/Amplified Genes



NRF2 Pathway Alterations in Lung SqCC

15-18 April 2015, Geneva, Switzerland

Mitsuishi Y, et al. Frontiers in Oncol 2012;2:1 Sporn MB, Libby T, Nat Rev Cancer 2012;12:564 Hammerman P, et al., Nature September 9, 2012

NRF2 Pathway Activation and Adjuvant **Chemotherapy Benefit in Lung Squamous Cell Carcinoma**

David W. Cescon^{1,2}, Desmond She³, Shingo Sakashita^{3,4}, Chang-Qi Zhu³, Melania Pintilie⁵, Frances A. Shepherd^{1,2}, and Ming-Sound Tsao^{3,4}

28-gene list separates NRF2-pathway altered and NRF2-normal cases in SqCC TCGA

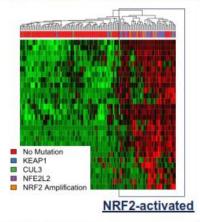
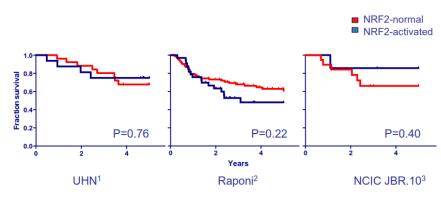
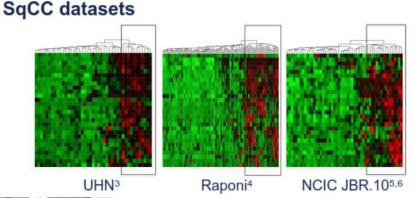



Figure 2. Re-clustering of SqCC TCGA cases using 28-genes. pathway genes (P<0.0001)

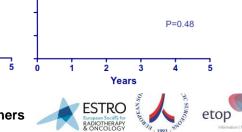
The NRF2-activated subgroup is highly enriched for cases with somatic alterations of NRF2

The NRF2 gene signature is not prognostic in SqCC patients treated with surgery alone



NRF2-activated SqCC subgroup appears not to benefit from adjuvant chemotherapy in NCIC JBR.10^{1,2}

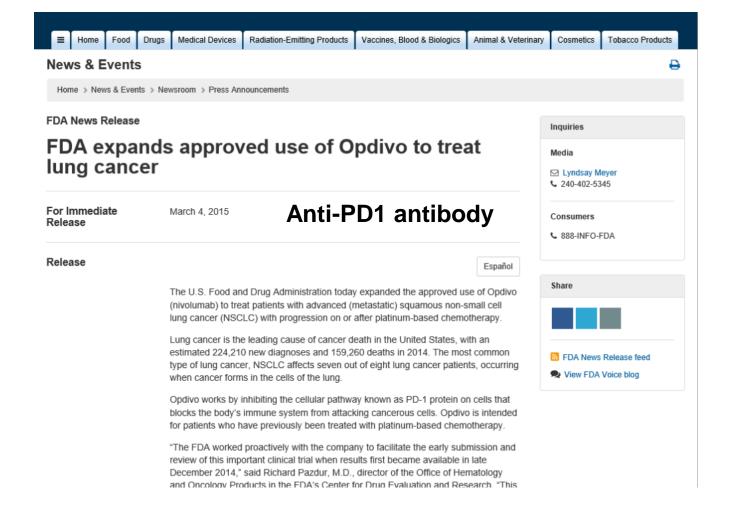
NRF2-normal


Years

Cisplatin + vinorelbine Observation

NRF2 signature identifies subgroups in other

NRF2-activated



Fraction survival

P=0.088

Opdivo's efficacy to treat squamous NSCLC was established in a randomized trial of 272 participants, of whom 135 received Opdivo and 137 received docetaxel. The trial was designed to measure the amount of time participants lived after starting treatment (overall survival). On average, participants who received Opdivo lived 3.2 months longer than those participants who received docetaxel.

Conclusions

- Immunohistochemical profiling using p40/p63/CK5 is integral to the diagnosis of non-keratinizing squamous cell carcinoma
- 2. Basaloid carcinoma is a squamous cell carcinoma with distinct histological and genomic profile and poor prognosis
- 3. In the setting of a past history of HPV-related cancers, HPV genotyping can help to differentiate between metastatic recurrence of independent lung primary
- 4. Additional genomic sequencing and profiling studies on squamous cell carcinoma may provide additional insights into personalized treatment of this disease

Acknowledgements

WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart Consensus and Editorial meeting, IARC, Lyon, 24–26 April 2014

