

Chemoprevention of Lung cancer

Andrea De Censi, MD Division of Medical Oncology Ospedali Galliera, Genova; Div. Prev, EIO, Milan

Wolfson Institute of Preventive Medicine Queen Mary University of London

ACKNOWLEDGMENTS Giulia Veronesi , MD EIO; ICH, Milan

IEO European Institute of Oncology

Eva Szabo, MD Division of Cancer Prevention National Cancer Institute

Current Options for Risk Reduction in High Risk Smokers

• Smoking cessation

Lung Health Study, 14.5 yr f/u -Anthonisen et al., Ann Intern Med 2005;142:233

• CT screening

- 20% decrease in lung cancer mortality- National Lung Screening Trial
 - NLST Research Team, NEJM 2011;365:395

Rationale for Lung Cancer Prevention

- Metastatic cancer is rarely curable
 - US lung cancer 5 yr survival is 16% (5% 1950's, 13% 1970's)
- All big killers except for lung are drug-preventable
 - Breast: SERMs, AIs
 - CRC: aspirin, anti COX2, HRT
 - Prostate: 5 alpha RI
- Long preclinical phase with increasing histologic and molecular abnormalities, identifiable populations at risk, window of opportunity for intervention

Efficacy: How Do We Identify Good Agents?

- Knowledge of mechanism
 - Example: HPV vaccine and cervical cancer
 - Need: understanding molecular pathogenesis
- Preclinical (in vitro and animal models)
 - Example: NSAID treated carcinogenesis and transgenic models
 - Need: models reflective of complexity of human disease
- Observational epidemiology (cohort and casecontrol studies)
 - Example: ASA and colon cancer incidence/mortality
- Secondary endpoints from clinical trials (including other diseases)
 - Example: Tamoxifen and contralateral breast cancer

Prevention may even be harmful! The beta carotene disaster in smokers

The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. N Engl J Med 1994;330:1029-1035.

Lung Cancer-Several Diseases Masquerading as One Implications for Trials Targeting Central vs. Peripheral Carcinogenesis

Normal 🛶 Hyperplasia/Metaplasia 🛶 Dysplasia 🛶 Cancer

Mild/Moderate/Severe/CIS

Squamous Bronchial dysplasia model

Adenomatous Helical CT detected nodules

Molecular pathogenesis different -several histologies; molecular differences within histologies (e.g., EGFR vs K-ras) Animal models – different responses to same interventions

Targeting Inflammation for Lung Cancer Prevention: Rationale for Corticosteroids

- Animal data showing role for steroids in cancer prevention
 - 1970's skin
 - Early 1990's lung (oral steroids)
 - Late 1990's lung (inhaled steroids)
- Epidemiology/Human data
 - Mainly negative (but studies of short exposure duration)
 - VA cohort with COPD (n=10,474, 423 lung cancers, 3.4 y followup) – HR 0.39 (95% CI, 0.16-0.96)
 - Parimon T et al., AJRCCM 175:712, 2007

Effect of Budesonide on Mouse Lung Tumorigenesis Pereira et al., Carcinogenesis 2002

-82% decrease in tumors

-Shift from adenoma to carcinoma

Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia Lam et al., Clin Cancer Res 2004;10:6502

- Bronchial dysplasia no effect of 6 mth Rx
- CT-detected lung nodules 27% vs. 12% resolved (p=0.024)

Peripheral Lung Carcinogenesis Trial Design Veronesi G et al. Cancer Prev Res 2011:4:34

Phase IIb Budesonide Chemoprevention Trial Lesion Specific Analysis Veronesi G et al. CaPR 2011; Ann Oncol 2015

12 months

5-yr f/u

-Overall response negative, but trend toward regression in nonsolid lesions (putative precursors of adenocarcinoma)

Adenocarcinoma Precursor: Atypical Adenomatous Hyperplasia

- Natural history unknown
- Localized ground glass opacities on CT:
 - AAH 25%; bronchoalveolar ca 50%; invasive adenoca 10%; fibrosis 15% (Nakajima et al., J Comput Assist Tomogr 2002;26:323)
 - AAH 63%; bronchoalveolar ca 34%; scar 3%
 (Ohtsuka et al., Eur J Cardio-Thor Surg 2006;30:160)

Non-solid nodules – Risk of Lung Cancer Pinsky et al. Cancer Prev Res 2014

	0-23 Months	24-59 Months	60-84 Months
	HR (95% CI)	HR (95% CI)	HR (95% CI)
≥1 10+ mm NCN (vs.	12.8 (9.5-17.2)	4.7 (2.9-7.5)	N.S.
only 4-9 mm NCNs)			
≥1 NCN w/ Spiculated	4.1 (3.0-5.5)	2.3 (1.5-3.5)	N.S.
or Poorly Defined			
Margins (vs. only NCNs			
with smooth margins)			
≥1 Persistent NCN (vs.	N/A	4.8 (2.8-8.3)	N.S.
non-persistent NCNs)			
≥1 NCN w/ Ground	0.3 (0.2-0.4)	N.S.	3.1 (1.4-6.6)
Glass Attenuation (vs.			
soft tissue attenuation)			

Interpretation: Increased long-term risk of ground glass nodules suggests *some* are lung cancer precursors

Effect of Aspirin on Lung Cancer Mortality -Rothwell et al., Lancet 2011;377:31

-individual patient data from trials of ASA vs. none

-lung: <u>f/u 0-10 yrs 0-20 yrs</u> <u>HR 0.68 0.71</u> (0.50-0.92, p=0.01) (0.58-0.89, p=0.002)

-adenocarcinoma only
-benefit only after 5 yrs

Evolution of Intraepithelial Neoplasia

If lung cancer death 5+ yrs post ASA use, then stage IV dx at 4+ yrs, Early stage and precursors present at 0-4 yrs post onset ASA use Therefore, ASA effect on precursors should be measurable with one year of use

Phase IIb Aspirin Chemoprevention Trial Giulia Veronesi, EIO/ICH, Milan

 1° Endpoint: #/Size non-solid lung nodules
 2° Endpoint: COX/LOX urinary metabolites (PGEM, LTE4), miRNA signature , nodule-based endpoints

myo-Inositol

- Glucose isomer
- Source of several second messengers & signaling molecules
- Dietary sources (grains, beans, fruits, rice)
- Studied in psychiatric conditions (+/-), diabetic neuropathy(+/-), polycystic ovary syndrome (+)

Rationale for *myo*-Inositol in Lung Cancer Prevention

• Efficacy

- Multiple animal studies show inhibition of carcinogen induced tumors in mice (40-50%)
 - Estensen and Wattenberg, Carcinogenesis 1993;14:1975
 - Hecht et al., Carcinogenesis 2002;23:1455
- Inhibits carcinogenesis in mainstream/sidestream smoke-exposed A/J mice by 53%
 - Witschi H et al., Carcinogenesis 1999;20:1375
- Combination with budesonide $\uparrow\uparrow$ efficacy up to 80%
 - Estensen and Wattenberg, Carcinogenesis 1993;14:1975
 - Witschi et al. Carcinogenesis 1999;20:1375
 - Wattenberg et al. Carcinogenesis 2000;21:179
- Safety
 - Used in multiple short term trials for psychiatric and diabetic neuropathy indications – no toxicity reported
 - Generally Regarded as Safe (GRAS) by US FDA terminology

Phase IIb *myo*-Inositol Chemoprevention Trial Stephen Lam, British Columbia Cancer Agency

1° Endpoint: Bronchial dysplasia
 2° Endpoint: Multiple biomarkers (gene expression), CT-detected lung nodules

Memmott et al CaPR 2010

The Future

Innovative agents

- Understanding molecular mechanisms of lung carcinogenesis (sq and adeno), TCGA of premalignancy
 - Molecularly targeted agents
- repurposing "old" drugs (eg, ASA, budesonide, metformin)
 - Emphasis on effects in multiple cancers and/or chronic disease states
- Innovative early phase trial designs
 - High throughput technologies (e.g., gene expression analysis) to detect drug effects on pathways in a short time frame

Thank you!