Invasion across the fissure Extent of resection

Pascal A. Thomas

North University Hospital, Marseille, France

15-18 April 2015, Geneva, Switzerland

Disclosure slide

- No conflict of interest related to the topic

Adjacent lobe invasion Incomplete fissure

Adjacent lobe invasion Complete fissure

ESD $=$

Staging

Stage lb

" Tumour with direct invasion of an adjacent lobe, across the fissure or by direct extension at a point where the fissure is deficient, should be classified as T2a unless other criteria assign a higher T category "

15-18 April 2015, Geneva, Switzerland

Prognosis

Table 1: Proposed T factor modifications for lung cancer staging based on recent data regarding invasion status involving pleura

Tumour characteristics	7th edition T classification	Proposed modification based on recent data
Invasion across interlobar fissure into adjacent lobe Direct extension into adjacent lobe in region of incomplete fissure Visceral pleural invasion in T2 tumourUpstages T1 tumours to T2a [2] Upstages T1 tumours to T2a [2]	Upstages T1 and T2a tumours to T2b [3] No impact on T category [3]	
	No impact on T category [1]	Upstages T2a tumours to T2b and T2b tumours to T3 [6, 9]

15-18 April 2015, Geneva, Switzerland

Table 2: Characteristics of patients with ALI according to the invasion pattern

	Number of patients $(\%)$		P-value
Interlobar fissure status in adjacent lobe invasion point	$\mathrm{ALI}=\mathrm{A}$ $(n=72)$	ALI=D $(n=18)$	
Five-year overall survival rate	49.8	76.6	0.009^{\prime}

Ohtaki et al. Eur J Cardiothorac Surg 2013;43:302-309

Lung cancer invading the fissure to the adjacent lobe: more a question of spreading mode than a staging problem

Marc Riquet ${ }^{\text {a } *, ~ P a s c a l ~ B e r n a ~}{ }^{\text {a }}$, Alex Arame ${ }^{\text {a }}$, Pierre Mordant ${ }^{\text {a }}$, Joao Carlos Das Neves Pereira ${ }^{\text {a }}$, Christophe Foucaulta, Antoine Dujon ${ }^{\text {b }}$ and Françoise Le Pimpec Barthes ${ }^{\text {a }}$

Eur J Cardiothorac Surg 2012;41:1047-51

European Society to Medical Oneciog

\% size

Aelcc ${ }^{\circ}$

15-18 April 2015, Geneva, Switzerland

Organisers

ESO $=$

Copyright © 2008 Aletta Ann Frazier, MD.

Lymph node invasion

Travis et al. J Thorac Oncol 2008;

3: 1384-1390

ESOE

Invasion Beyond Interlobar Pleura in Non-small Cell Lung Cancer*

Hiroyuki Miura, MD, FCCP; Osamu Taira, MD, FCCP; Osamu Uchida, MD; and Harubumi Kato, MD, FCCP

```
Study objective: To assess the outcome of lung cancer with invasion beyond interlobar pleura and
to clarify whether it should be treated in the same way ns invasion to the parictal pleura or to 
other visceral pleura.
Design: Retropective analysi,
Setting: Tokyo Medical Coilege Hospital.
Patients: Eighteen resected non-small cell lung cancers with invasion beyond interlobar pleura
other visceral pleural inges of those patients, those with parietal pleural invasion, and those with
invasion, or distant metastasis were excluded.
Results: The 5-year survival rate for patients with invasion beyond interlobar pleura was }34.2
and the median survival time was 56.5 months. The outcome was significantly better than that of
p
without lymph node metastasis, similar results were obtained. There was no difference between
the outcome of patients with invasion beyond interlobar pleura, who undergo lobectomy with a
parietal resection of the invaded lobe, and that of patients with visceral pleural invasion, whe
\mathrm{ andergo lobectomy.}
that of patients with parion of patients with invasion beyond interlobar pleura is different from
operative method was lobectomy with only parietal resection of the invaded lobe to preserve the
pulmonary function.
```



```
Abbreviations: MST = median sumual time
```

The TNM classification ${ }^{1}$ proposed by Union In 1 ternational Contre le Cancer states that a tumo invading the visceral pleura is classified as T2 and a tumor directly invading the chest wall, diaphragm, mediastinal pleura, or parietal pericardium is classi-
fied as T3. Tumors invading the surface of interlobar pleura are also T2. However, there is no clear pleura are also T2. However, there is no clear tumor that invades an adjacent lobe beyond the interlobar pleura. The TNM classification did not nclude the adjacent pulmonary lobe as an adjoining rgan corresponding with T 3 or T 4 . Since the lymph low of interlobar pleura is probably different from
 and Uchida, Hschiogi, Medical Center of Tokyo Mcotzal Co
lege, and the Departnent of Surgery (Dr. Kato), Tokyo Medic College Hospitad Tokyo Jppan
lanuscript recived July 25,1997 ; revsion accepted June 3 , ${ }_{l}^{\text {Manns }}$ Consepondence tor Hinoyuki Siurv, MD, FCCP, Doportment of

that of parietal pleura, the question arises whether the invasion beyond interlobar pleura should be considered separately from other pleural invasions. To clarify whether this type of invasion should be pleural invasion, with invasion beyond interlotar plew were studied

Materials and Methods Twenty-cne lang cancer patients with invasion beyoud inter-
sotar pleura wre trated patically from 19s0 to 1950 at Tokyo
Medical College Hospital Two patients with T4 disease and one Medical College Hospital. Two patients with T4 disease and one
with M1 were excluded from this study as thes arr poorer prognostic faxtors than pleural invasion. Therefore, a total of 18 patients with invasion beyond intertobar pleura, weres stubied clinically ynd puthologically and the results were compared with
those of patients with parietal pleural invasion, induding mediastimal pleurall invasion and diaphrergan, and those of putients with other viserall pleural invasion troated during the same time pleural dissemination or distant mectastasis were excluded from the series

15-18 April 2015, Geneva, Switzerland

ESNO

ESTRO

etop

etop

	Authors	Year	Size (mm)	Total
	Nonaka et al.	2005	42.5 ± 28	50
	Demir et al.	2007	59 ± 29	60
	Yang et al.	2009	54 ± 16	28
T Size	Haam et al.	2012	47 ± 13	46
	Riquet et al.	2012	42.7 ± 12	154
	Ohtaki et al	2013	45 ± 18	90
	Leuzzi et al	2014	45 ± 21	40
	Total	$\mathbf{2 0 0 5 - 2 0 1 4}$	$\mathbf{4 8} \pm \mathbf{2 0}$	$\mathbf{4 6 8}$

ESO $=$
etop

Authors	Year	N0	N1	N2	Total
Miura et al.	1998	$8(44.5 \%)$	$6(33.3 \%)$	$4(22.2 \%)$	18
Okada et al.	1999	$6(31.6 \%)$	$7(36.8 \%)$	$6(31.6 \%)$	19
Nonaka et al.	2005	$27(54 \%)$	$12(24 \%)$	$11(22 \%)$	50
Demir et al.	2007	$23(38.3 \%)$	$29(48.3 \%)$	$8(13.4 \%)$	60
Joshi et al.	2011	$113(62.8 \%)$	$41(22.8 \%)$	$23(12.8 \%)$	180
Riquet et al.	2012	$68(44.2 \%)$	$45(29.1 \%)$	$41(26.6 \%)$	154
Ohtaki et al.	2013	$32(35.5 \%)$	$34(37.8 \%)$	$24(26.7 \%)$	90
Leuzzi et al.	2014	$23(58 \%)$	$11(27 \%)$	$6(15 \%)$	40
Total		$300(49.1 \%)$	$\mathbf{1 8 5}(\mathbf{3 0 . 3 \%)}$	$123(20.1 \%)$	611

N status

15-18 April 2015, Geneva, Switzerland

Extent of lung resection

- Pneumonectomy/bilobectomy
- Lobectomy + sublobar resection (wedge or segmentectomy)
- Combined sublobar resections

Depending on the size, the location (anatomy) of the tumour and its nodal status
etop

| Authors | Period | Pneumonectomy | Bilobectomy | Extended
 lobectomy |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Miura et al. | $1980-1990$ | $4(22.2 \%)$ | $4(22.2 \%)$ | $10(55.6 \%)$ |
| Okada et al. | $1984-1997$ | | $10(52.6 \%)$ | $9(47.4 \%)$ |

15-18 April 2015, Geneva, Switzerland
etop

Table 2: Characteristics of patients with ALI according to the invasion pattern

	Number of patients $(\%)$		P-value
Interlobar fissure status in adjacent lobe invasion point	ALI-A $(n=72)$	ALI-D $(n=18)$	
Mode of resection	$14(20)$	$2(11)$	$0.408^{2.4}$
Pneumonectomy	$19(26)$	$3(17)$	
Bilobectomy	$36(50)$	$9(50)$	
Lobectomy + wedge resection	$3(4)$	$4(22)$	
Lobectomy + segmentectomy			

Ohtaki et al. Eur J Cardiothorac Surg 2013;43:302-309

Combined sublobar resections?

- Haam et al: 1 patient (2.2\%)
- Riquet et al: 7 patients (10.3\%)

etop

15-18 April 2015, Geneva, Switzerland

ESO $=$

15-18 April 2015, Geneva, Switzerland

Contemporary operative risks

Survival

Authors	Period	5-year survival
Miura et al.	$1980-1990$	34%
Okada et al.	$1984-1997$	37%
Nonaka et al.	$1987-2000$	63%
Demir et al.	$1994-2004$	36%
Yang et al.	$1997-2006$	41%
Ohtaki et al.	$1993-2006$	56%
Riquet et al.	$1984-2007$	39%
Haam et al.	$1992-2009$	53%

Fig. 3. The survival curves of bilobectomy or lobectomy plus partial resection group vs pneumonectomy group (P, pneumonectomy; BL/LPR, bilobectomy or lobectomy plus partial resection).

Demir A et al. Eur J Cardiothorac Surg 2007;32:855-858

15-18 April 2015, Geneva, Switzerland

Okada M et al. Ann Thorac Surg 1999;68:2049-52

15-18 April 2015, Geneva, Switzerland

European Society for Medical Oncology

Leuzzi et al. J Thorac Oncol 2014; 9: 97-108

15-18 April 2015, Geneva, Switzerland

Organisers

ESNO cooo sclevce
sentre mevicine
Besp practice

Table 3: Prognostic factors of the patients with ALI for overall survival

Characteristics	n	5-year OS	Univariate analysis, P-value ${ }^{\prime}$	Multivariate analysis	
				HR (95\% CI)	P-value ${ }^{+}$
Age (years)					
<67	43	51.4	0.655		
≥ 67	47	60.6			
Gender					
Male	59	56.2	0.946		
Female	31	54.2			
Smoking history					
Never	19	52.6	0.654		
Yes	71	56.3			
CEA ($\mathrm{ng} / \mathrm{ml}$)					
<5.0	39	62.3	0.154		
≥ 5.0	51	50.3			
Mode of resection					
Pneumonectomy/bilobectomy	38	50.9	0.327		
Lobectomy + wedge resection or segmentectomy	52	59.0			
Histology					
Adenocarcinoma	52	49.1	0.280		
Non-adenocarcinoma	38	64.9			
Tumour size (cm)					
≤ 3.0	16	49.2	0.968		
>3.0	74	56.9			
Pathological nodal status					
pN0	32	71.4	$0.007{ }^{5}$	1.00	0.109
pN1	34	58.3		1.46 (0.68-3.13)	0.328
pN2	24	29.8		2.17 (1.01-4.65)	0.047\%
Lymphatic permeation 01.50 .352					
Negative	41	61.5	0.352		
Positive	49	50.0			
Vascular invasion					
Negative	16	93.8	$0.001{ }^{5}$	1.00	0.041^{5}
Positive	74	47.0		4.64 (1.06-20.24)	
Type of ALI					
ALI-D	18	76.6		1.00	0.097
ALI-A	72	49.8	0.009^{5}	2.47 (0.85-7.17)	

Ohtaki et al. Eur J Cardiothorac Surg 2013:43:302-309
15-18 April 2015, Geneva, Switzerland
ESDO

вепtre mevicine
Bes practice
European Society for Medical Oncology
Partners
etop

Type of lymphadenectomy

50\% Lymph node metastases

15-18 April 2015, Geneva, Switzerland

ESO $=$
Partners

etop

Take-home messages

Surgery should remove

- What is necessary to provide a RO resection
- At a lesser risk
- With anatomical resections
- And lymphadenectomy
- Keeping in mind that the majority of these patients has to receive adjuvant chemotherapy
etop

