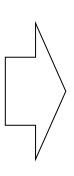

Crizotinib-controlled ALK positive disease and three brain metastases

Matthias Guckenberger



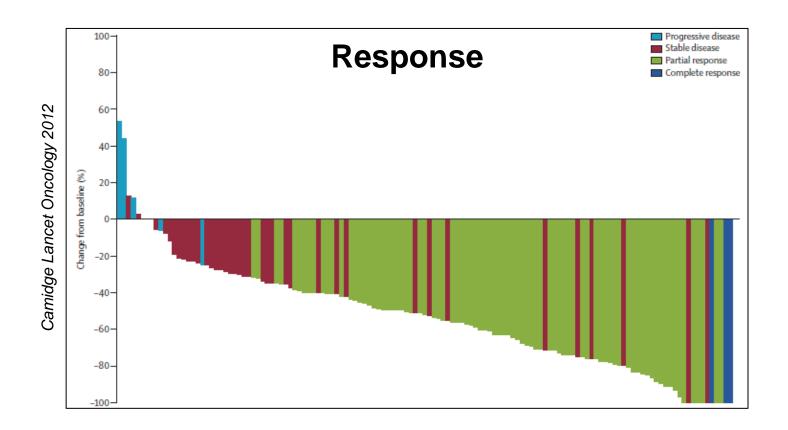
The (typical) case

- 64 y.o. male; former smoker 5 p.y.; no relevant comorbidities
- ECOG 1, no weight loss
- Newly diagnosed stage IV NSCLC, adenocarcinoma, ALK positive



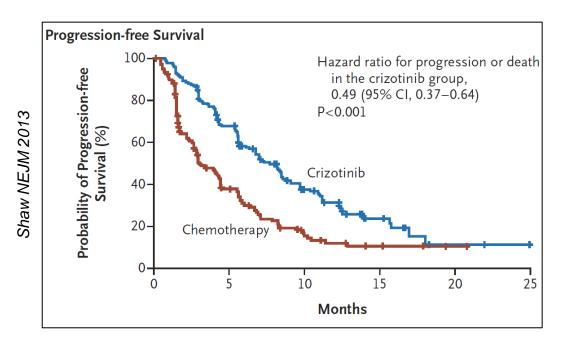
Disseminated Metastatic Disease

Very good partial response to Crizotinib



CNS progression only: 3 brain mets 0.7 - 1.2cm

Chun Cancer Biol Ther 2012


Efficacy of Crizotinib in ALK positive NSCLC

 Toxicity: visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels

Reasons for Crizotinib failure: resistance

	Crizotinib	Pemetrexed Docetaxel	P-value
OS	12.2 months	12.1 months	NS

- All patients will develop progressive disease & no improvement of OS
- Multiple resistance mechanisms to Crizotinib

Crizotinib treatment with wice daily 250mg

CSF-to-plasma ratio of 0.0026

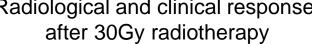
Costa JCO 2011

CNS progression during Crizotinib treatment

10 / 39 patients with extended Crizotinib treatment

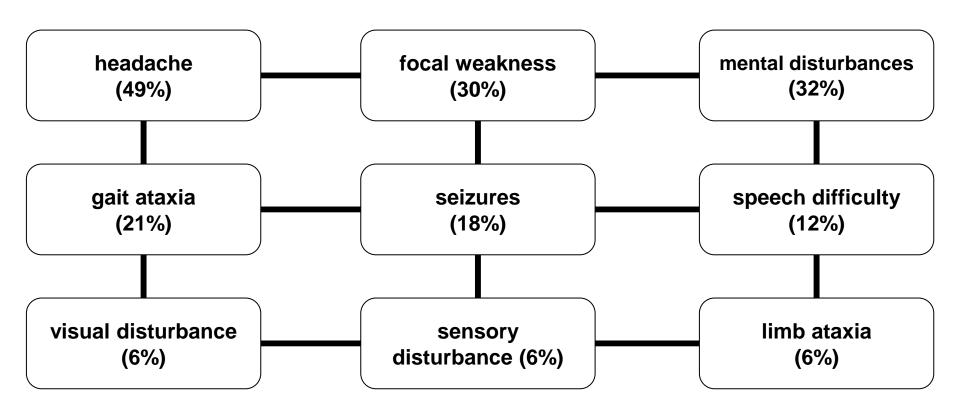
Camidge Lancet Oncology 2012

CNS as a frequent site of Crizotininb treatment failure



Intramedullary spinal metastases after ~ 2.5 years Crizotinib

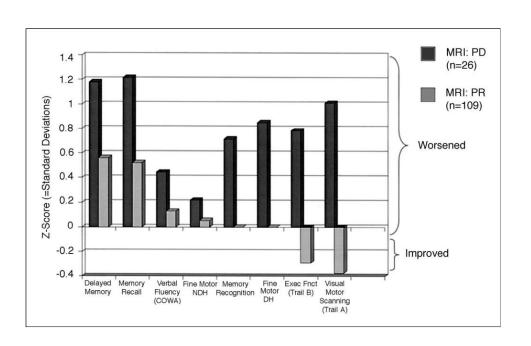
Radiological and clinical response after 30Gy radiotherapy



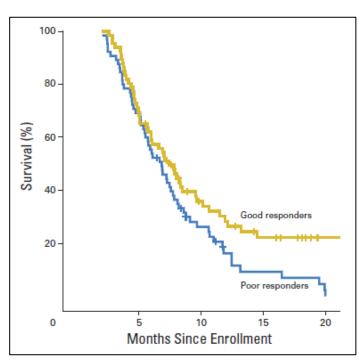
Gainor JTO 2013

CNS failures not only in the brain but also spinal cord

Symptoms of brain metastases



Tremendous impact on Quality of life



Importance of achieving maximum response

Neurocognitive function

Overall survival

Li JCO 2007

Meyers JCO 2004

Improved LOCAL intracranial tumor response

Improved neurocognitive function & improved OS

Aims of treatment

1. Maximize response of brain metastases

2. Maintain systematic disease stability

Therapeutic options:

Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Neurosurgery & Radiotherapy
- Whole brain irradiation
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Therapeutic options:

Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Neurosurgery & Radiotherapy
- Whole brain irradiation
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

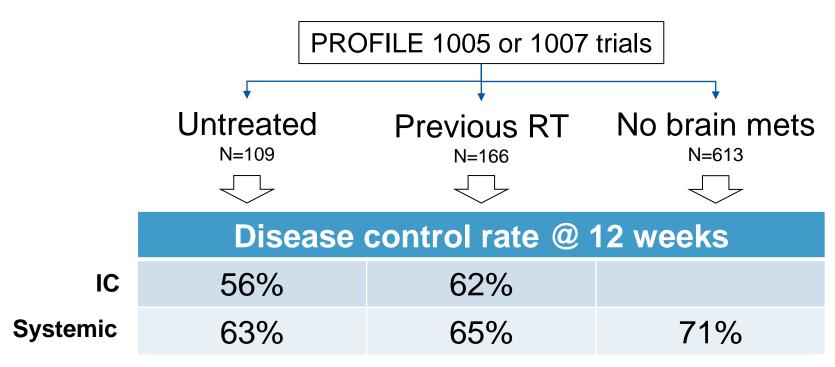
Change to Chemotherapy and delayed local Tx

Randomized trials comparing CT alone versus CT & WBI

Study	СТ	os	RR after CT alone
Postmus 2000	Teniposide	NS	22%
Robinet 2001	Cisplatin and vinorelbine	NS	-
Mornex 2003	Fotemustine	NS	7%

- Low response rates of brain metastases to "classical" CT
- Remaining extra-CNS efficacy of Crizotinib making it difficult to abandom ALK targeting treatment

Therapeutic options:

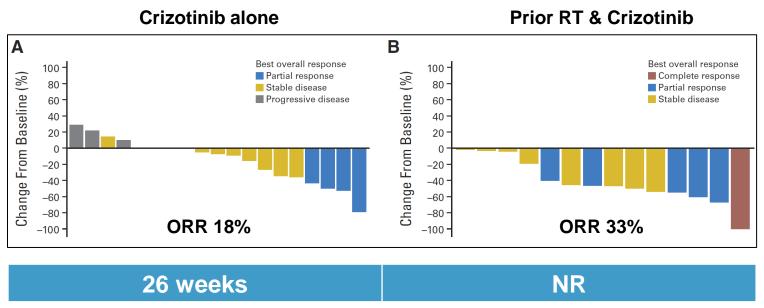

Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Neurosurgery & Radiotherapy
- Whole brain irradiation
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Continuation of Crizotinib after diagnosis of asymptomatic brain mets

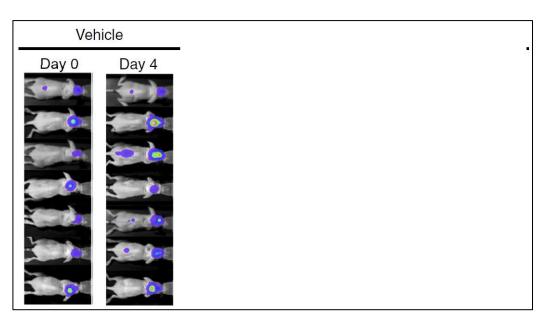
Costa JCO 2015

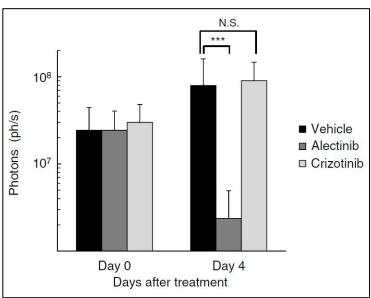

Even short term:

Insufficient control of asymptomatic brain metastases with Crizotinib

Continuation of Crizotinib after diagnosis of brain mets

Intra-cranial response


Costa JCO 2015


Improved response of brain metastes to Crizotinib when combined with radiotherapy

CNS activity of ALK targeting agents

ALK positive mouse model of implanted brain metastases

Kodama Cancer Chemother Pharmacol 2014

- No CNS activity of Crizotinib
- High CNS activity of Alectinib

Therapeutic options:

Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Neurosurgery & Radiotherapy
- Whole brain irradiation
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Targeting of ALK positive NSCLC

First-generation ALK inhibitors

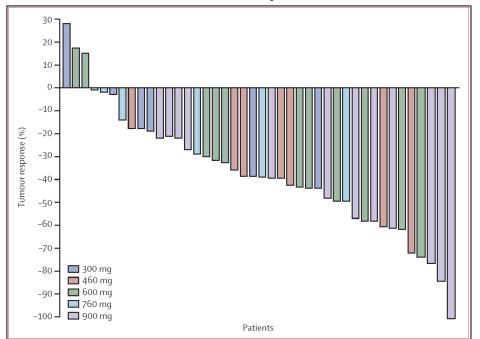
Crizotinib

Oral tyrosine kinase inhibitor targeting ALK, MET, and ROS1

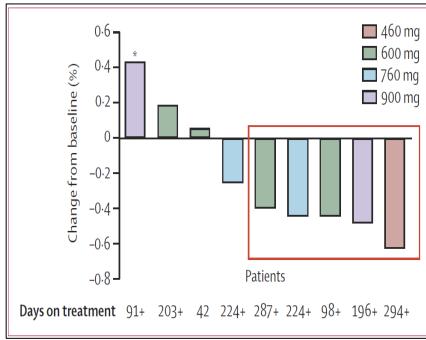
Second-generation ALK inhibitors

Ceritinib

selective small-molecule tyrosine kinase inhibitor of ALK


Alectinib

highly selective ALK inhibitor



Alectinib after Crizotinib progression

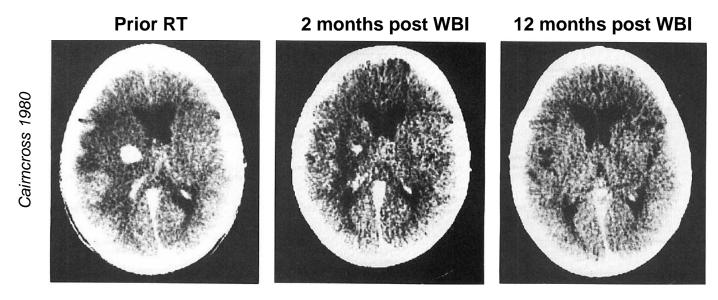
Overall response

CNS response

Gadgeel Lancet Oncology 2014

- Dose reduction required in 26% due to adverse events
- Intra-cranial response in only 5 / 9 patients

Therapeutic options:


Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Whole brain irradiation
- Neurosurgery
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Facts about whole brain irradiation only: Symptom improvement

61 y.o. female with RCC; WBI 10 x 3Gy

- Response rates > 50% independently from histology
- Symptom improvement in 60 85%

Facts about whole brain irradiation only: Impact on OS

Best supportive care	Corticostereoids	Whole brain irradiation
OS: 1 month	OS: 2 months	OS: 3 – 6 months

Chao 1954 Katz 1981 Zimm 1981

- No randomized controlled trials, retrospective data only
- Despite WBI: neurological progression cause of death in up to 50%
- Neurocognitive function impairment in patients with longer OS

WBI with hippocampus sparing

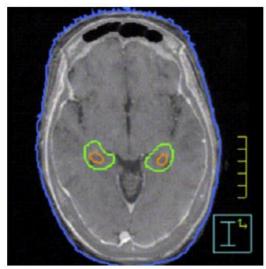
Goal: reduce toxicity of WBI

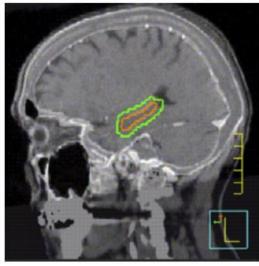
-> memory function / learning

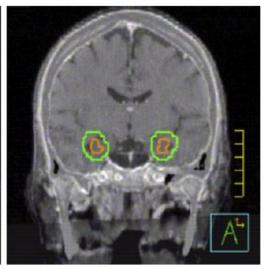
Location of function:

Hippocampus
Neural stem cells in subgranular
zone of the dentate gyrus

Location of metastases:


Only 8.6 % of brain mets located in the hippocampus plus 5mm margin Gondi Radiother Oncol 2010


Feasibility of avoiding:


Modern technologies (IMRT) reduce hippocampas dose by >80%

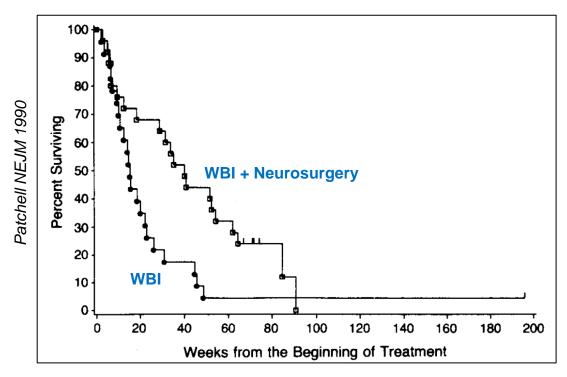
WBI with hippocampus sparing

RTOG 0933

- Prospective phase II trial of hippocampus sparing during WBI with 10 x 3Gy
- The primary endpoint was the Hopkins Verbal Learning Test Delayed Recall (HVLT-DR) at 4 months
- N=113
- Metastatic progression in hippocampus:
 4.5%
- Mean relative decline in HVLT-DR from baseline to 4 months:
 7.0%

Gondi IJROBP 2013

Therapeutic options:


Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

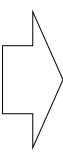
- Whole brain irradiation
- Neurosurgery
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Surgical resection of solitary brain metastases

Study	Inclusion criteria	os
Patchell 1990	KPS ≥ 70	40 vs 15 weeks
Noordijk 1994	WHO ≤ 2	10 mo vs 6 mo
Mintz 1996	KPS ≥ 50	6 mo vs 6 mo

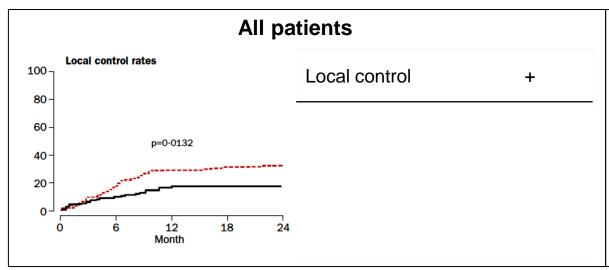
Therapeutic options:

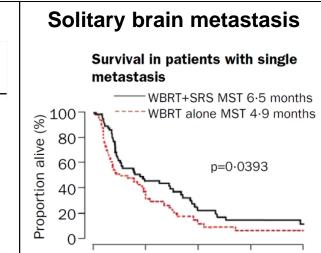
Systemic:


- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Whole brain irradiation
- Neurosurgery
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

Radiosurgery: From frame-based to image-guided





Radiosurgery of brain metastases

RTOG 95-08: Andrews Lancet 2004

- RCT: WBI vs WBI & SRS
 - 1 3 brain metastases (333 patients)
 - KPS ≥ 70

SRS improves OS in RPA class I patients compared to WBI only

Therapeutic options:

Systemic:

- Change to Chemotherapy
- Continue Crizotinib
- Change to second-line ALK inhibitor

- Whole brain irradiation
- Neurosurgery
- Whole brain irradiation & Radiosurgery
- Radiosurgery only

SRS w/o WBI for 1 – 3 brain metastases

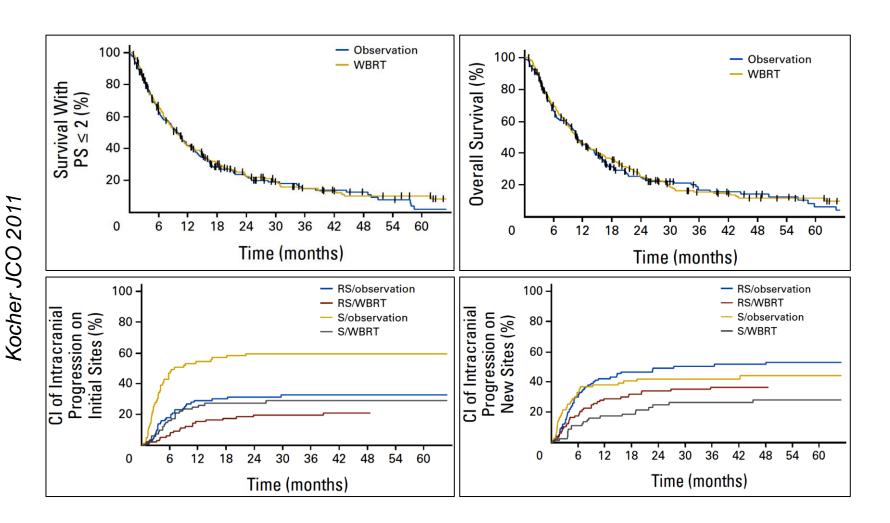
- 1- 3 brain metastases
- stable systemic disease or asymptomatic primary tumors
- WHO performance status (PS) of 0 to 2

Kocher JCO 2011

Neurosurgery n=160 Radiosurgery n=199

WBI N=180 Observation N=179

Primary EP:

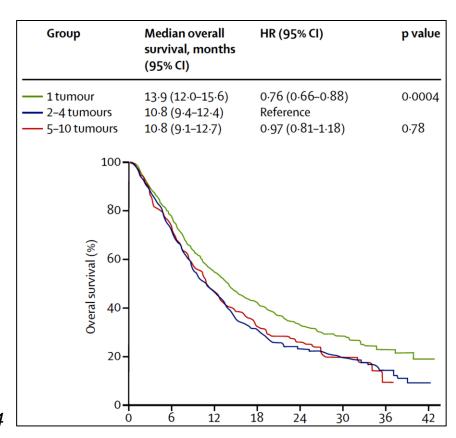

· duration of functional independence

Secondary EP:

- frequency of intracranial relapse at initially
- · treated and at new sites
- · progression-free
- overall survival
- late toxicities
- quality of life

SRS w/o WBI for 1 - 3 brain metastases

SRS w/o WBI for >3/4 brain metastases

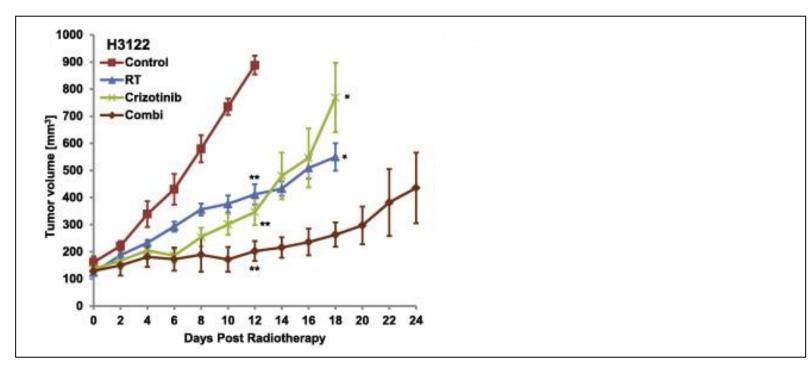

Prospective observational study

Inclusion criteria: n=1194

- SRS only for 1 10 brain metastases
- Largest tumor <10ml, <3cm
- Total cumulative volume 15ml
- KPS ≥ 70

SRS with 1 x 20-22Gy MRI FU every 3 months

Yamamoto Lancet Oncol 2014



OS identical in patients with 2-4 and 5-10 metastases

Interaction of Crizotinib & radiotherapy

Dai Radiother Oncol 2015

Xenograft model in ALK+ (H3122)

- Synergistic anti-proliferative and pro-apoptotic effect between RT and Crizotinib
- Effect on normal tissue ?

Local ablative radiotherapy for oligo-progressive ALK+ NSCLC

Weickhardt JTO 2012

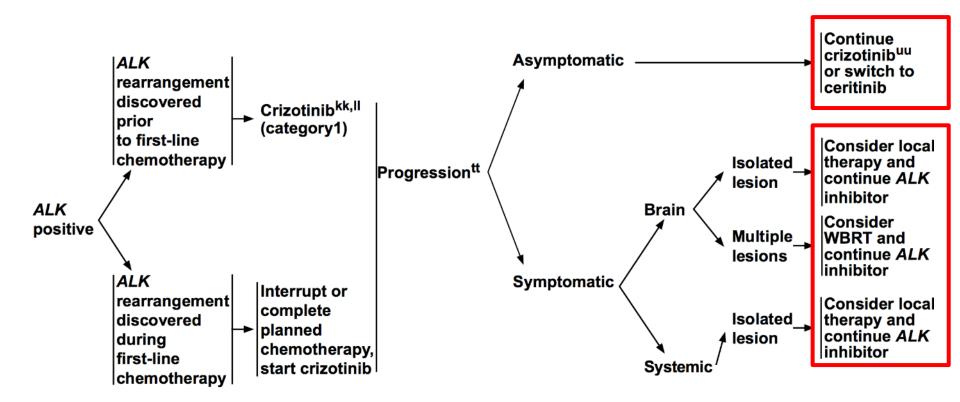
Retrospective study n=38 ALK+ Crizotinib

PFS 9 months

15 / 28 suitable for local RT 50% CNS progression

WBI & SRS & SBRT
Continuation of Crizotinib

Time to further progression: 6 months


RT to CNS: 7.1 months

RT to eCNS: 4 months

- Six additional months of disease control
- No grade 3/4 toxicity except fatigue in patients receiving WBI

What is stated in the guidelines for this situation ... NCCN Guidelines Version 5.2015

- Continue Crizotinib beyond progression
- > Symptomatic vs asymptomatic the indication for local TX?

So how would my treatment look like

Interpretation of clinical situation:

- CNS failure due to inability of Crizotinib to cross the blood-brain barrier
- No acquired extra-CNS Crizotinib-resistance, yet

Recommendations:

Systemic:

- Proceed with Crizotinib
 - Continuous extra-CNS activity
 - Cange to second-generation ALK inhibitor -> systemic failure

CNS:

Asymptomatic lesions <5mm: close MRI follow-up</p>

Large lesions not responsing to steroids: neurosurgery

Large majority of patients: radiosurgery only

