

Can adaptive designs help to proceed in clinical trials in lung cancer? 5 reasons contra

Marc Buyse, ScD IDDI, San Francisco

Adaptive designs

New paradigms...

treatments

patients

design

endpoints

Better treatments...

The Future

treatments

Targeted drugs, immunotherapies, ...

patients

design

endpoints

Stratified patients...

treatments

Targeted drugs, immunotherapies, ...

design

patients

Predictive biomarkers (*EGFR*, *KRAS*, *BRAF*, *FGFR*, NGS, ...)

endpoints

Biomarker-based endpoints...

treatments

Targeted drugs, immunotherapies, ...

design

patients

Predictive biomarkers (*EGFR*, *KRAS*, *BRAF*, *FGFR*, NGS, ...)

endpoints

PD biomarkers

(molecular targets,

CTCs, cDNA,

functional imaging, ...)

Innovative trial designs...

treatments

Targeted drugs, immunotherapies, ...

design

Biomarker-driven, Adaptive, Bayesian, Platform, ...

patients

Predictive biomarkers (*EGFR*, *KRAS*, *BRAF*, *FGFR*, NGS, ...)

endpoints

PD biomarkers

(molecular targets,

CTCs, cDNA,

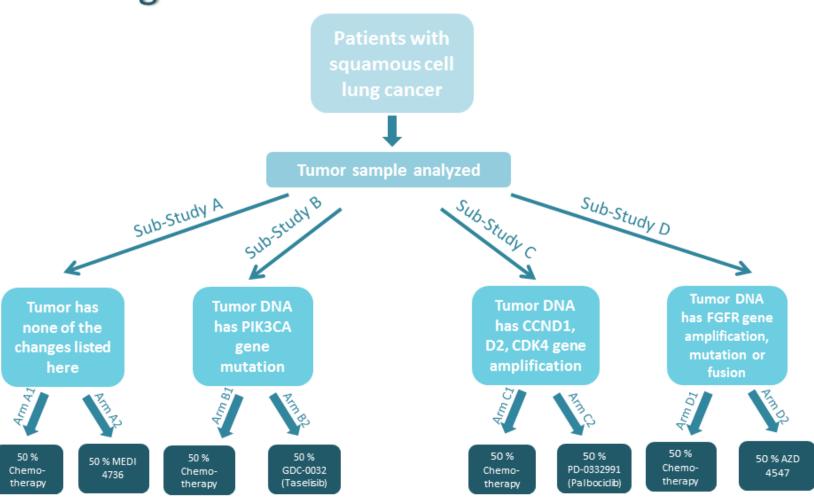
functional imaging, ...)

Example of a Bayesian Adaptive Design for patients with NSCLC refractory to chemotherapy

Enrollment into BATTLE umbrella protocol Blomarker profiling, marker group assignment, and adaptive randomization Biomarker group Biomarker 2 3 5 4 **EGFR** + K-ras/B-raf × + VEGF/VEGFR × + \times RXR/Cyclin D1 × × + × 30% 10% Percentage 15% 20% 25%

Putative treatment Erlotinib Sorafenib Vandetanib

Refs: Zhou et al, Clinical Trials 2008;5:181-93; Lee et al, Clinical Trials 2010; 7:584-596; Kim et al, Cancer Discov 2011;1:44-53.


Erlotinib +

Bexarotene

Example of a stratified, randomized, master protocol trial for 2nd line treatment of patients with squamous cell NSCLC

Lung-MAP Sub-Studies for Treatment

Comparison between BATTLE and LUNG-MAP

Innovative treatments

BATTLE

LUNG-MAP

Targeted agents
(erlotinib, vandetanib,
bexarotene, sorafenib)

Docetaxel

vs. targeted agents

(MEDI4736, palbociclib, taselisib, AZD4547)

Innovative treatments

BATTLE

LUNG-MAP

Targeted agents

(erlotinib, vandetanib,

bexarotene, sorafenib)

(Roche/Genentech,

AstraZeneca, Eisai, Bayer)

Docetaxel

vs. targeted agents

(MEDI4736, palbociclib,

taselisib, AZD4547)

(AstraZeneca, Pfizer,

Roche/Genentech)

Stratified patients

BATTLE

LUNG-MAP

5 biomarker groups based on putative

predictive factors

4 sub-studies based

on established

predictive factors

Biomarker-based endpoints

BATTLE

LUNG-MAP

8-week DCR

PFS and OS

Biomarker-based endpoints

BATTLE

8-week DCR

PFS and OS

Is 8-week DCR a good predictor of PFS/OS?

Innovative design

BATTLE

LUNG-MAP

Bayesian Adaptive

Stratified Randomized

Innovative design

BATTLE

Bayesian Adaptive

Stratified Randomized

- Bayesian: requires prior distribution of 8-week DCR by treatment by biomarker group
- Adaptive: allocates more patients to "better" treatment

Biometrika (2003), 90, 2, pp. 367–378 © 2003 Biometrika Trust Printed in Great Britain

On the inefficiency of the adaptive design for monitoring clinical trials

By ANASTASIOS A. TSIATIS

Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.

tsiatis@stat.ncsu.edu

AND CYRUS MEHTA

Cytel Software Corporation, 675 Massachusetts Avenue, Cambridge, Massachusetts 02139, U.S.A.

mehta@cytel.com

For any adaptive design, one can always construct a standard group-sequential test based on the sequential likelihood ratio test statistic that, for any parameter value in the space of alternatives, will reject the null hypothesis earlier with higher probability, and, for any parameter value not in the space of alternatives, will accept the null hypothesis earlier with higher probability.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Outcome-Adaptive Randomization: Is it Useful?

Edward L. Korn and Boris Freidlin

With no differential patient accrual rates because of the trial design, we find no benefits to outcome-adaptive randomization over 1:1 randomization, and we recommend the latter. If it is thought that the patient accrual rates will be substantially higher because of the possibility of a higher proportion of patients being randomly assigned to the experimental treatment (because the trial will be more attractive to patients and clinicians), we recommend using a fixed 2:1 randomization instead of an outcome-adaptive randomization.

J Clin Oncol 28. Published by the American Society of Clinical Oncology

CLINICAL TRIALS

Are outcome-adaptive allocation trials ethical?

Clinical Trials
1–5
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1740774514563583
ctj.sagepub.com

Spencer Phillips Hey and Jonathan Kimmelman

CLINICAL TRIALS

Are outcome-adaptive allocation trials ethical?

Clinical Trials
1–5
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1740774514563583
cti.sagepub.com

Spencer Phillips Hey and Jonathan Kimmelman

Donald A Berry

Marc Buyse

Steven Joffe and Susan S Ellenberg

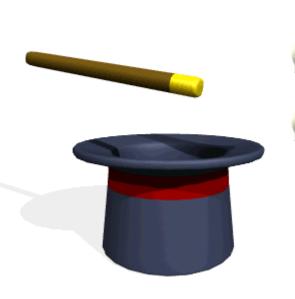
J Jack Lee

Edward L Korn and Boris Freidlin

Scott Brian Saxman

Adaptive designs

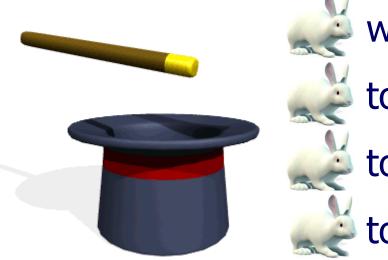
Adaptive designs



when biomarkers are available

Adaptive designs are required / useful

to test many treatments at once

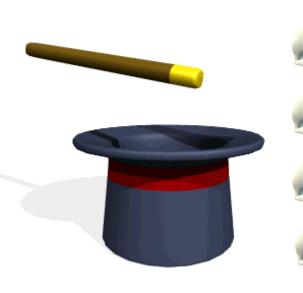


Adaptive designs are required / useful

when birongrs are available

to test wrong at once

to make trials more ethical



Adaptive designs are required / useful

when birongrs are available

to test wrong atments at once to mak wrong ore ethical

to gain statistical efficiency

Adaptive designs are required / useful

when himongrs are available

to test wrong at ments at once

to makwrong ore ethical

to gainwrongal efficiency

to speed up development

Adaptive designs are required / useful

when himongrs are available

to test wrong at ments at once

to makwrong ore ethical

to gainwrongal efficiency

to specwrong velopment