Immune-checkpoint blockade for the treatment of advanced NSCLC

Jesus Corral, MD University Hospital Virgen del Rocio Seville, Spain

Disclosure

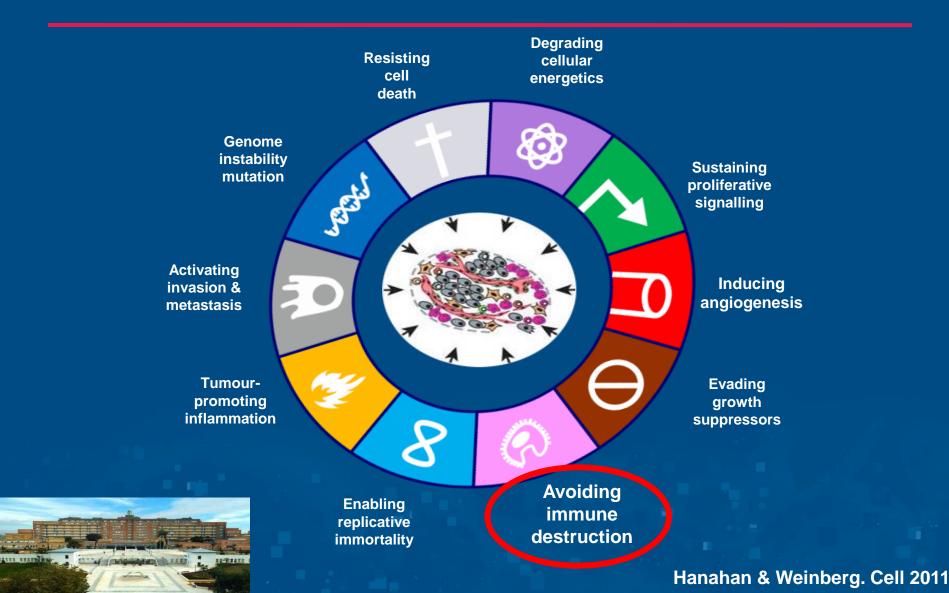
Scientific advice and clinical trials

- MSD
- BMS
- Roche
- Astra Zeneca

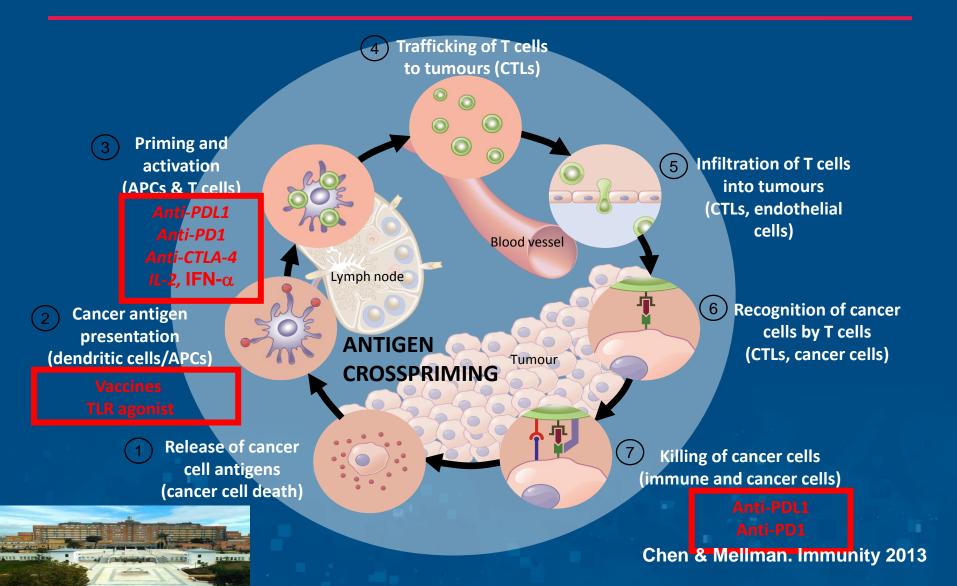
Background

1.- Introduction
2.- PD-1/PD-L1 blockade
2.1.- Efficacy overview
2.2.- Toxicity profile
3.- Patient selection
4.- Conclusions

Background


Introduction
 PD-1/PD-L1 blockade

 2.1.- Efficacy overview
 2.2.- Toxicity profile


 Patient selection
 Conclusions

Therapeutic Intervention at Cancer Hallmarks

Cancer-immunity cycle and Immunotherapy

Vaccines have shown limited efficacy in NSCLC

Tecemotide¹ (L-BLP25; MUC1 vaccine)

Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial

Charles Butts, Mark A Socinski, Paul L Mitchell, Nick Thatcher, Libor Havel, Maciej Krzakowski, Sergiusz Nawrocki, Tudor-Eliade Ciuleanu, Lionel Bosquée, José Manuel Trigo, Alexander Spira, Lise Tremblay, Jan Nyman, Rodryg Ramlau, Gun Wickart Johnsson, Peter Eliis, Oleg Gladkov, José Rodrigues Pereinz Wilfried Erns Etrich Eberhardt, Christoph Helwig, Andreas Schröder, Frances A Shepherd, an behalf of the START triat team *

GSK1572932A² (MAGE-A3 vaccine)

ABSTRACT

11730 - MAGRIT, a double-blind, randomized, placebo-controlled Phase III study to assess the efficacy of the recMAGE-A3 + AS15 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small cell lung cancer (NSCLC)

Belagenpumatucel-L³ (NSCLC cellular vaccine)

CIMAvax⁴ (EGF vaccine)

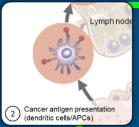
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Phase II Study of Belagenpumatucel-L, a Transforming Growth Factor Beta-2 Antisense Gene-Modified Allogeneic Tumor Cell Vaccine in Non–Small-Cell Lung Cancer John Nemunaitis, Robert O. Dillman, Paul O. Schwarzenberger, Neil Senzer, Casey Cunningham, Jodi Cutler, Alex Tong, Padmasini Kumar, Beena Pappen, Cody Hamilton, Edward DeVol, Phillip B. Maples, Lily Liu, Terry Chamberin, Daniel J. Shawler, and Habib Fakhrai JOURNAL OF CLINICAL ONCOLOGY

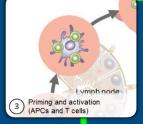
ORIGINAL REPORT

Phase II Randomized Controlled Trial of an Epidermal Growth Factor Vaccine in Advanced Non–Small-Cell


Lung Cancer

Elia Neminger Vinagensa, Ana de la Torre, Marta Osorio Radríguez, Mauricio Català Ferrer, Idania Bravo, Mario Mendosci del Pino, Daniel Alreta Abreu, Soronida Aosta Brobos, Rolanda Rives, Concepción del Castillo Carrillo, Marta González Dueñas, Carrmen Viada, Bartiris García Verdecia, Tunia Coromber Ramos, Giscal González Marinello, and Acustín Lace Divila

1. Butts, et al. Lancet Oncol 2014; 2. Vansteenkiste, et al. ESMO 2014 3. Nemunaitis, et al. J Clin Oncol 2006; 4. Neninger Vinageras, et al. J Clin Oncol 2008

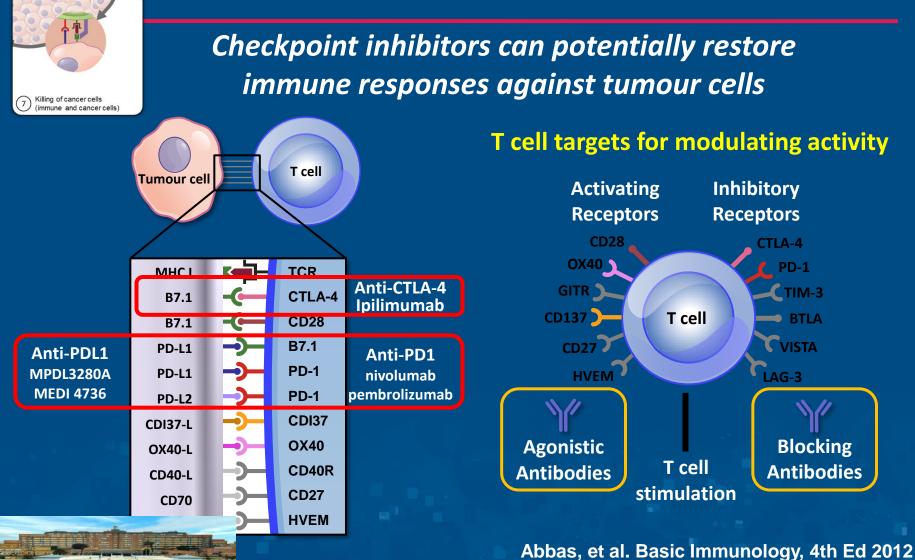

Other NSCLC immunotherapy approaches

Toll-like receptors^{1,2}

Toll-like receptors (TLRs) are membrane proteins that recognise foreign pathogens¹

Stimulation of TLR9 by receptor agonists can enhance tumour vaccination and can promote antigen-specific anti-tumour immunity without a vaccine

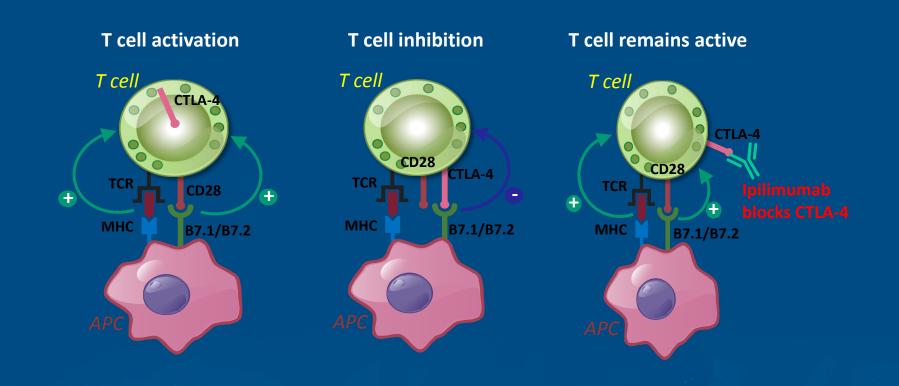
IL-2³⁻⁵


A regulatory cytokine produced mainly by T cells and NK cells and promotes activation and proliferation of immune cells but also regulates immune tolerance

IFN- α^5

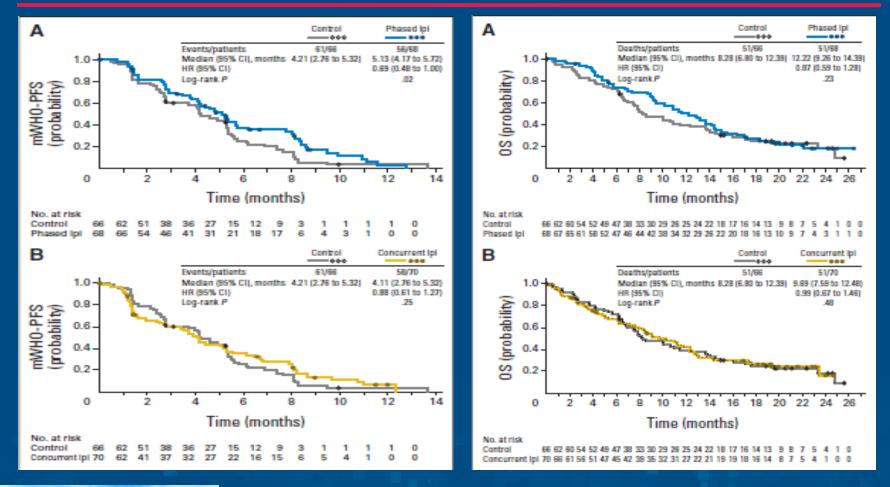
IFN-α is a type-I interferon which induces tumour MHC class I expression, activate several immune cell types can cause direct tumour cells apoptosis

Krieg. J Clin Invest 2007; 2. Droemann, et al. Resp Res 2005
 Ridolfi, et al. Int J Oncol 2011; 4. Lissoni, et al. Br J Cancer 1992;
 Jansen, et al. J Immunother 1992


Checkpoint inhibition

CONTRACTOR DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER

Mellman, et al. Nature 2011


Targeting the CTLA-4 pathway

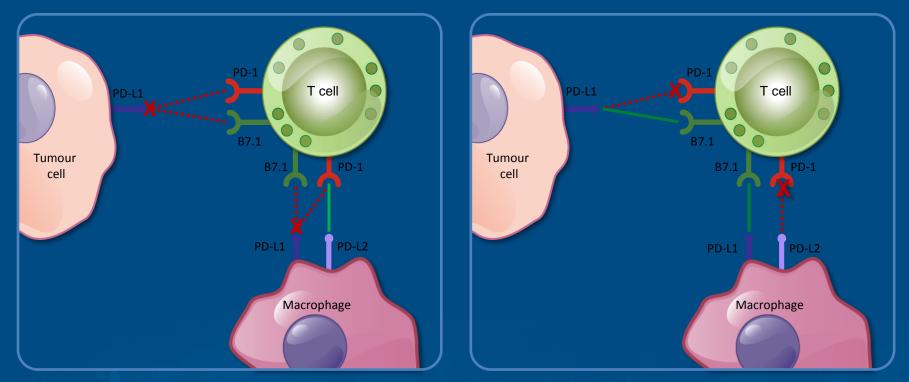
Lynch T, et al. J Clin Oncol 2012

Ipilimumab has shown modest efficacy in NSCLC

Lynch T, et al. J Clin Oncol 2012

Ipilimumab ongoing trials in patients with NSCLC

Status	Study
Recruiting	Study of combined lonizing Radiation and Ipilimumab in metastatic NSCLC
Recruiting	Phase 3 in Squamous NSCLC subjects comparing Ipilimumab plus Paclitaxel and Carboplatin versus Placebo plus Paclitaxel and Carboplatin
Recruiting	Phase Ib trial with Ipilimumab plus Erlotinib or Crizotinib for EGFR or ALK mutated stage IV NSCLC



www.ClinicalTrials.gov

Targeting the PD-L1/ PD-1 pathway

Anti-PD-L1

Anti-PD-1

Chen, et al. Clin Cancer Res 2012; Paterson, et al. J Immunol 2011 Yang, et al. J Immunol 2011; Brahmer, et al. N Engl J Med 2012

Overview of PD-L1 and PD-1 inhibitors Clinical data in Lung Cancer

Therapeutic	Lead company	Antibody type	Affinity/K ₂	Reference
Anti-PDL1				
MPDL3280A	Roche	Engineered IgG1 (no ADCC)	0.4nM	Herbst et al. ASCO 2013
MEDI-4736	AstraZeneca	Modified IgG1 (no ADCC)	Not available	Stewart et al. Cancer Res 2011
Anti-PD1				
Nivolumab	Bristol-Myers Squibb	lgG4	2.6nM	Brahmer et al. J Clin Oncol 2010
MK3475	Merck & Co	IgG4 (humanised)	29рМ	Patnaik et al. ASCO 2012

Background

1.- Introduction
2.- PD-1/PD-L1 blockade
2.1.- Efficacy overview
2.2.- Toxicity profile
3.- Patient selection
4.- Conclusions

Background

1.- Introduction
2.- PD-1/PD-L1 blockade
2.1.- Efficacy overview
2.2.- Toxicity profile
3.- Patient selection
4.- Conclusions

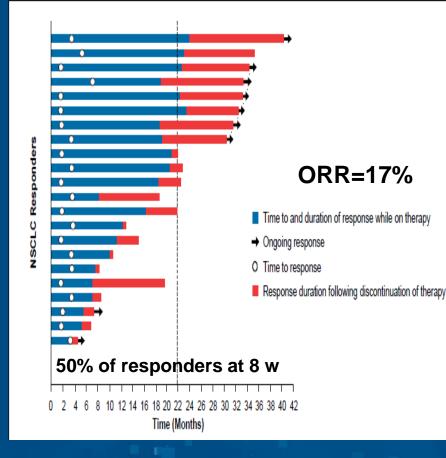
1) Monotherapy pretreated >2 lines NSCLC patients

2) Monotherapy 1st and 2nd line

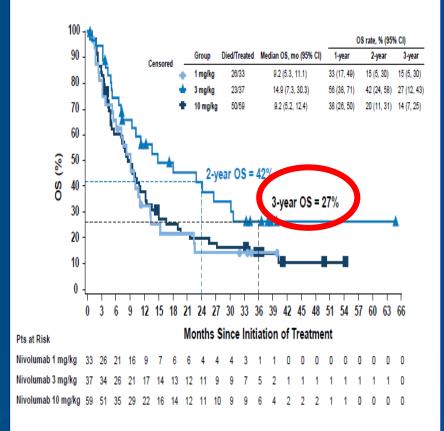
3) Combination therapy

4) New approaches

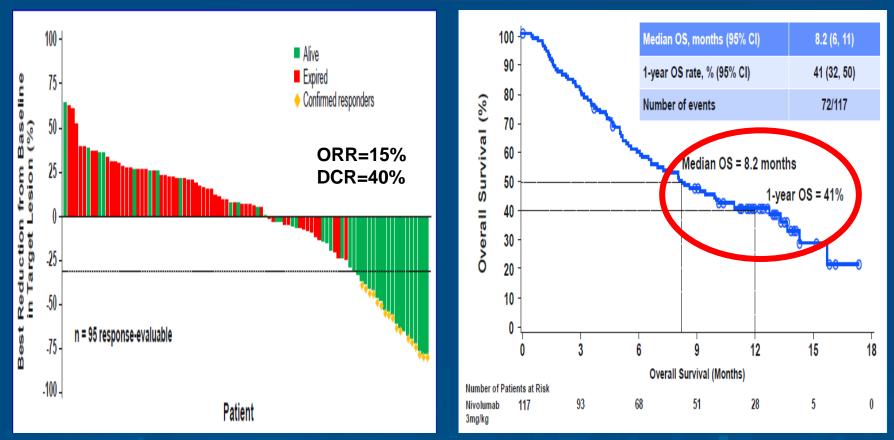
1) Monotherapy pretreated >2 lines NSCLC patients


2) Monotherapy 1st and 2nd line

3) Combination therapy


4) New approaches

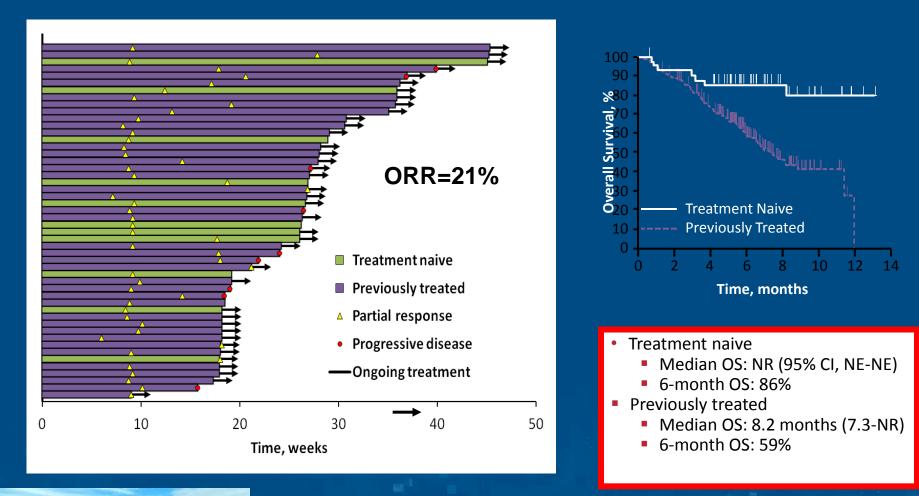
PD-1 blockade: Nivolumab



AT T THE OWNER

Gettinger SN, et al. CMSTO 2014

PD-1 blockade: Nivolumab (squamous)



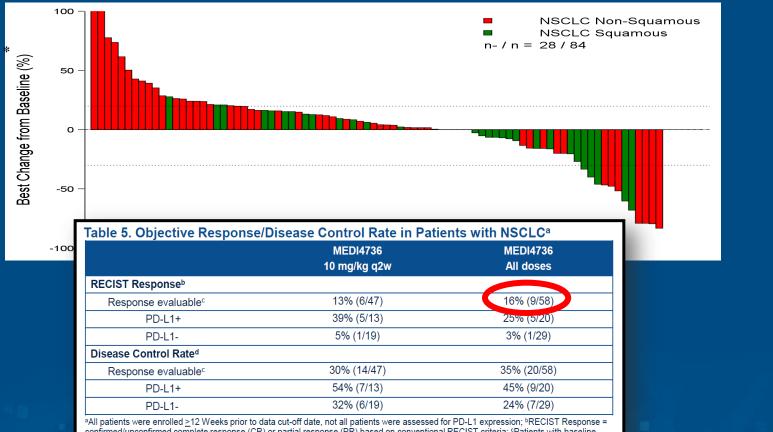
65% > 3 prior chemo lines AND 76% < 3 months from completion last regimen

Ramalingam SS, et al. CMSTO 2014

PD-1 blockade: Pembrolizumab

EB Garon. ESMO 2014

PD-L1 Blockade: MPDL3280A


	Single Agent RECIST 1.1 Response Rate (ORR ^a)	SD of 24 Weeks or Longer	24-Week PFS Rate
Overall population (N = 175)	21%	19%	42%
NSCLC (n = 53)	23%	17%	45%
Nonsquamous (n = 42)	21%	17%	44%
Squamous (n = 11)	27%	18%	46%

^a ORR includes investigator-assessed unconfirmed and confirmed PR. Six patients who did not have a post-baseline scan were included as non-responders. Patients first dosed at 1-20 mg/kg by Oct 1, 2012; data cutoff Apr 30, 2013.

Soria JC. ESMO 2013

PD-L1 Blockade: MEDI4736

confirmed/unconfirmed complete response (CR) or partial response (PR) based on conventional RECIST criteria; ^cPatients with baseline assessment + ≥1 follow-up scan (includes those that discontinued due to PD or death prior to first follow-up scan); ^dDisease Control = RECIST Response + stable disease ≥12 Weeks

J Brahmer. ASCO 2014

Monotherapy pretreated >2 lines: Summary efficacy overview

	Anti PD1		Anti PD-L 1	
	MK-3475	Nivolumab	MEDI4736	MPDL3280A
All, N	236	129	58	53
ORR	21%	17%	16%	23%
Pretreated, N	194	129	58	53
ORR	20%	17%	16%	23%
PFS	2,5 m	2,3 m	NR	45% at 6m
OS	8,2 m	9,9 m	NR	NR

Garon E, ESMO 2014; Brahmer J, ASCO 2014; Gettinger ASCO 2014; Soria JC, ESMO 2014

1) Monotherapy pretreated >2 lines NSCLC patients

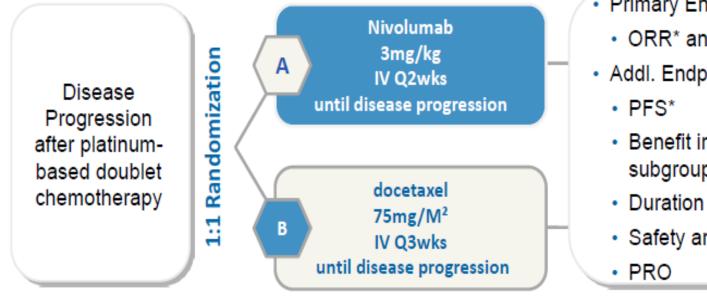
2) Monotherapy 1st and 2nd line

3) Combination therapy

4) New approaches

Monotherapy 1st line: Summary efficacy overview

	Anti PD1		
	MK-3475	Nivolumab	
Ν	42	20+52	
ORR	26%	30-21%	
PFS	6,5 m; 51% at 6 m	9 m; 15,6 w	
OS	NR; 86% at 6 m	42% at 1 y; 98,3 w	



Garon E, ESMO 2014; Brahmer J, ASCO 2014) Rizvi NA, CMSTO 2014

Overview of anti-PD-L1/PD-1 therapies currently under investigation in NSCLC

Target	Therapy	Phase	Trial Design	Trial ID
	II	≥1L PD-L1+ NSCLC (FIR)	NCT01846416	
	MPDL3280A	Ш	≥1L PD-L1+ NSCLC (BIRCH)	NCT02031458
	(Engineered IgG1, no ADCC)	Ш	2/3L NSCLC vs docetaxel (POPLAR)	NCT01903993
		Ш	2/3L NSCLC vs docetaxel (OAK)	NCT02008227
Anti-PD-L1		I	Solid tumours	NCT01693562
	MEDI4736	ш	≥2L NSCLC after chemoradiation vs placebo (PACIFIC)	NCT02125461
(Modified IgG1, no ADCC)	11/111	2L squamous NSCLC biomarker-targeted vs docetaxel	NCT02154490	
		Ш	≥3L NSCLC (ATLANTIC)	NCT02087423
		I	≥2L NSCLC	NCT00730639
		Ш	≥2L squamous NSCLC vs docetaxel	NCT01642004
	Nivolumab (IgG4)	Ш	2/3L non-squamous NSCLC vs docetaxel	NCT01673867
Anti-PD-1		Ш	≥3L squamous NSCLC	NCT01721759
		Ш	1L non-squamous PD-L1+ NSCLC vs Chemo	NCT02041533
	Pembrolizumab (IgG4, humanised)	I	NSCLC	NCT01295827
		Ш	1L PD-L1+ NSCLC vs platinum-chemo	NCT02142738
		11/111	≥2L PD-L1+ NSCLC vs docetaxel	NCT01905657

Phase III Nivolumab vs Docetaxel **2nd line squamous NSCLC**

Primary Endpoint:

- ORR* and OS
- Addl. Endpoints:
 - Benefit in PD-L1+/subgroups
 - Duration and time to OR
 - Safety and Tolerability

* ORR (using RECIST 1.1 criteria) and PFS as determined by an independent review committee (IRC)

FDA Nivolumab approval press note

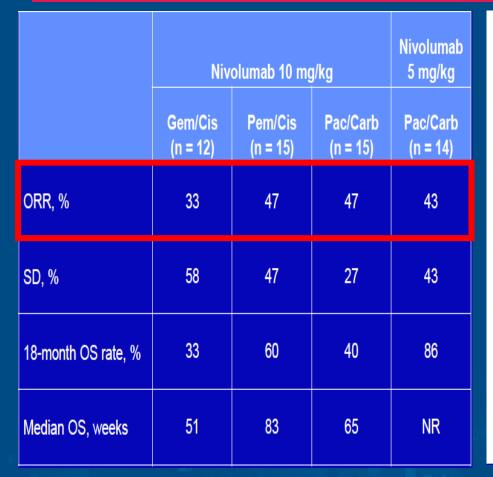
FDA Approves Opdivo (nivolumab) for the Treatment of Patients with Previously Treated Metastatic Squamous Non-Small Cell Lung Cancer Opdivo is the first and only immuno-oncology therapy proven to extend survival in patients treated with one prior therapy CheckMate -017 achieved the benchmark goal of improving overall survival in previously treated squamous non-small cell lung cancer (NSCLC) Wednesday, March 4, 2015 4:13 pm EST

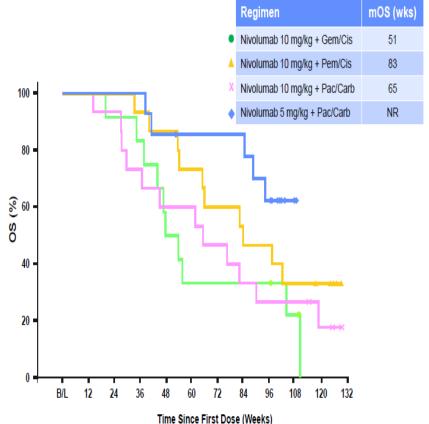
U.S. Food and Drug Administration (FDA) has approved *Opdivo* (nivolumab) injection, for intravenous use, for the treatment of patients with metastatic squamous non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. *Opdivo* is the first and only PD-1 (programmed death receptor-1) therapy to demonstrate overall survival in previously treated metastatic squamous NSCLC. *Opdivo* demonstrated significantly superior overall survival (OS) vs. docetaxel, with a 41% reduction in the risk of death (hazard ratio: 0.59 [95% CI: 0.44, 0.79; p=0.00025]), in a prespecified interim analysis of a Phase III clinical trial. The median OS was 9.2 months in the *Opdivo* arm (95% CI: 7.3, 13.3) and 6 months in the docetaxel arm (95% CI: 5.1, 7.3).

2015 ASCO Annual Meeting Illumination & Innovation transforming data into learning

May 29-lune 2, 2015

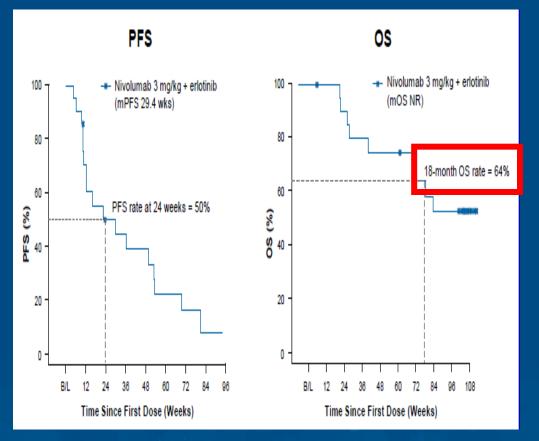
1) Monotherapy pretreated >2 lines NSCLC patients


2) Monotherapy 1st and 2nd line


3) Combination therapy

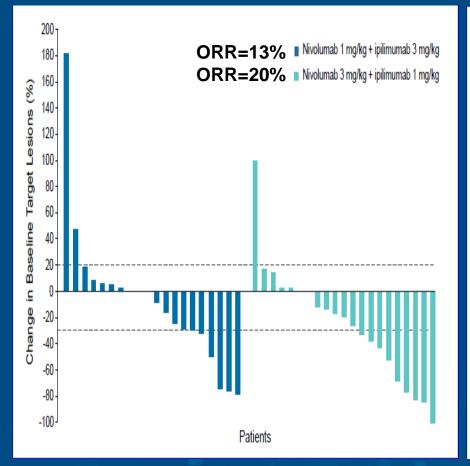
4) New approaches

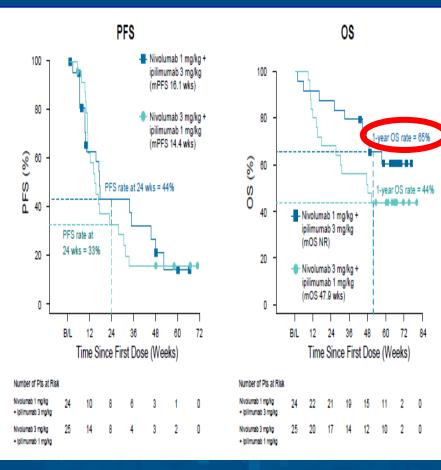
Nivolumab in combination with chemo



Antonia SJ, et al. CMSTO 2014

Nivolumab in combination with erlotinib


	Prior treatment with erlotinib (n = 20)	No prior treatment with erlotinib (n = 1)
Confirmed ORR, n (%) [95% CI]	4 (19) [5, 42]	
Ongoing responders, n (%)	2 (67)	1 (100)
Best overall response, n (%) PRª SD PD	3 (15) 9 (45) 8 (40)¤	1 (100) 0 0

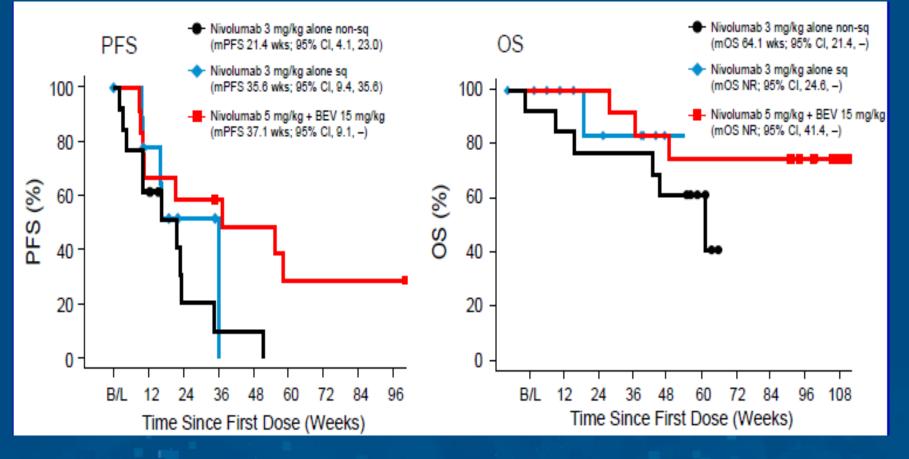

na-Waant

Gettinger SN, et al. CMSTO 2014

Nivolumab in combination with Ipilimumab

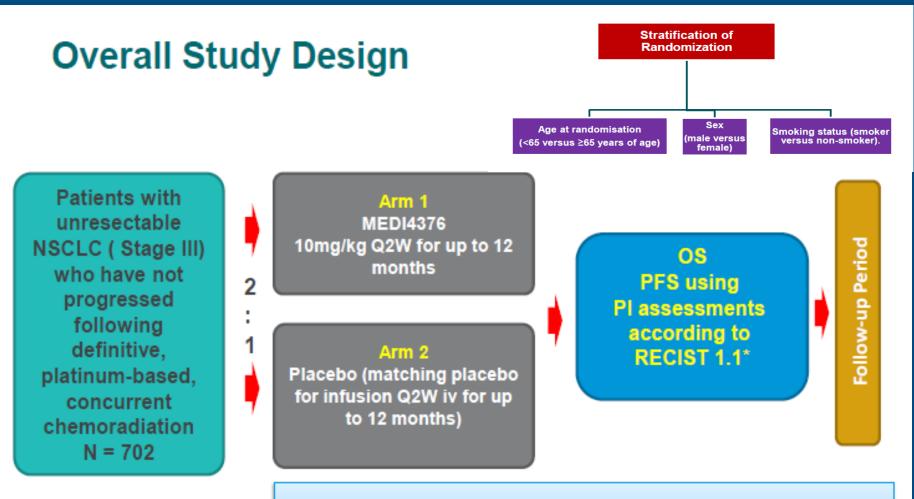
Antonia SJ, et al. CMSTO 2014

1) Monotherapy pretreated >2 lines NSCLC patients


2) Monotherapy 1st and 2nd line

3) Combination therapy

4) New approaches



Nivolumab maintenance therapy

Rizvi NA, et al. CMSTO 2014

MEDI4736 will commence treatment on Day 1 and continue on a Q2W schedule for a maximum of 12 months or until PD- IV administration

EORTC Lung Cancer Group-ETOP (Coordinators: M. O,Brien and L. Paz Ares)

International, blind, randomized phase III trial to compare Pembrolizumab versus placebo for patients with early stage NSCLC after resection and completion of standard adjuvant therapy (PEARLS)

Primary endpoint: DFS (overall and strong PDL-1+ population) Secondary endpoints:

- OS (overall and strong PDL-1+ population)
- Toxicity profile, QoL

Stratification of randomization

- Stage (IB vs II vs IIIA)
- Adjuvant chemotherapy (no vs yes)
- Institution
- Histology (non-squamous versus squamous)
- PD-L1 (3 groups: 0 (negative) versus 1-49%
- (weak positive) versus > 50% (strong positive)
- Smoking status (smoker versus non-smoker)

Background

1.- Introduction
2.- PD-1/PD-L1 blockade
2.1.- Efficacy overview
2.2.- Toxicity profile
3.- Patient selection
4.- Conclusions

PD-1 Blockade Toxicity

Treatment-related select AE category	All Grades, ^ь % (n)	Grade 3–4, % (n)
Pts with any treatment-related select AE	41 (53)	5 (6)
Skin	16 (20)	0
Gastrointestinal	12 (15)	1 (1)
Pulmonary	7 (9) ^c	2 (3)
Endocrinopathies	6 (8)	0
Hepatic	5 (6)	1 (1)
Infusion reaction	4 (5)	1 (1)
Renal	3 (4)	0

Gettinger SN, et al. CMSTO 2014

Toxicity profile by PD-L1 expression

	Baseline PD-L1 Expression ^a					
	PD-L1⁺	(n = 26)	PD-L1-	(n = 21)		
Treatment-related select AE category	All grades, n (%)	Grade 3–4, n (%)	All grades, n (%)	Grade 3–4, n (%)		
Skin	6 (23)	1 (4)	6 (29)	1 (5)		
Endocrinopathies	4 (15)	0	1 (5)	0		
Gastrointestinal	3 (12)	0	2 (10)	0		
Infusion reaction	2 (8)	0	1 (5)	0		
Pulmonary	2 (8)	1 (4)	1 (5)	0		
Hepatic	1 (4)	1 (4)	0	0		
Renal	0	0	0	0		

Rizvi NA, et al. CMSTO 2014

Toxicity profile by line of treatment

Treatment-related select AE category	All Grades, ^b % (n)	Grade 3–4, % (n)
Pts with any treatment-related select AE	41 (53)	5 (6)
Skin	16 (20)	0
Gastrointestinal	12 (15)	1 (1)
Pulmonary	7 (9) [°]	2 (3)
Endocrinopathies	6 (8)	0
Hepatic	5 (6)	1 (1)
Infusion reaction	4 (5)	1 (1)
Renal	3 (4)	0

Pretreated patients

	Nivolumab monotherapy (N = 52)		
Treatment-related AEs	All grades,ª n (%)	Grade 3–4, ^b n (%)	
Pts with any treatment-related AE	33 (64)	8 (15)	
Fatigue	13 (25)	0	
Rash	10 (19)	2 (4)	
Diarrhea	5 (10)	0	
Nausea	5 (10)	0	
Pruritus	5 (10)	0	
Hypothyroidism	3 (6)	0	
Pneumonitis	3 (6)	1 (2)	

1st line patients

Gettinger SN, et al. CMSTO 2014

Toxicity profile by PD-1 vs PD-L1 blockade

Treatment-related select AE category	All Grades, ^b % (n)	Grade 3–4, % (n)
Pts with any treatment-related select AE	41 (53)	5 (6)
Skin	16 (20)	0
Gastrointestinal	12 (15)	1 (1)
Pulmonary	7 (9) ^c	2 (3)
Endocrinopathies	6 (8)	0
Hepatic	5 (6)	1 (1)
Infusion reaction	4 (5)	1 (1)
Renal	3 (4)	0

TTAN BEAMANNESS AND

Adverse Event	Treatment-Related, n (%) N = 85		
	Any Grade ^a	Grade 3-4	
Any AE	56 (66%)	9 (11%)	
Fatigue	17 (20%)	2 (2%)	
Nausea	12 (14%)	1 (1%)	
Decreased appetite	10 (12%)	0	
Dyspnea	8 (9%)	1 (1%)	
Diarrhea	7 (8%)	0	
Asthenia	6 (7%)	0	
Headache	6 (7%)	0	
Rash	6 (7%)	0	
Pyrexia	5 (6%)	0	
Vomiting	5 (6%)	1 (1%)	
Upper respiratory tract infection	4 (5%)	0	

Gettinger SN, et al. CMSTO 2014 Soria JC. ESMO 2013

AEs related with Nivolumab in combination

13% pneumonitis	Total (N = 56)			
7% grade 3-4	All Grades	Grade 3	Grade 4	
Patients with any treatment-related AE, % (n)	95 (53)	41 (23)	4 (2)	
Treatment-related AE, % (n)				
Fatigue	71 (40)	5 (3)	0	
Nausea	46 (26)	2 (1)	0	
Decreased appetite	36 (20)	2 (1)	0	
Alopecia	30 (17)	0	0	
Anemia	27 (15)	4 (2)	0	
Rash	27 (15)	2 (1)	0	
Arthralgia	21 (12)	0	0	
Diarrhea	21 (12)	2 (1)	0	
Constipation	20 (11)	0	0	
Peripheral neuropathy	20 (11)	0	0	

Chemotherapy

	Nivolumab + erlotinib (N = 21)		
Treatment-related AE	All Grades, n (%)	Grade 3,ª n (%)	
Pts with any treatment-related AE	21 (100)	5 (24)	
Rash	10 (48)	0	
Fatigue	6 (29)	0	
Paronychia	6 (29)	0	
Skin fissures	5 (24)	0	
Diarrhea	4 (19)	2 (10)	
Dry skin	4 (19)	0	
Nausea	4 (19)	0	
ALT increased	3 (14)	1 (5)	
Alopecia	3 (14)	0	
AST increased	3 (14)	2 (10)	
Dry mouth	3 (14)	0	
Hypothyroidism	3 (14)	0	
Nail disorder	3 (14)	0	
Pruritus	3 (14)	0	
Vomiting	3 (14)	0	

Erlotinib

Antonia SJ, et al. CMSTO 2014 Gettinger SN, et al. CMSTO 2014

AEs related with Nivolumab plus Ipilimumab

	+ ipilimum	umab 1 mg/kg numab 3 mg/kg (n = 24)		ab 1 mg/kg	Total (N = 49)	
Treatment related AE, n (%)	All grades	Grade 3–4	All grades	Grade 3-4	All grades	Grade 3–4
Pts with any treatment- related AE	22 (92)	14 (58)	21 (84)	11 (44)	43 (88)	25 (51)
Diamhea	11 (46)	3 (13)	6 (24)	2 (8)	17 (35)	5 (10)
Colitis	1 (4)	1 (4)	4 (16)	3 (12)	5 (10)	4 (8)
Lipase increased	4 (17)	2 (8)	4 (16)	2 (8)	8 (16)	4 (8)
AST increased	4 (17)	3 (13)	1 (4)	1 (4)	5 (10)	4 (8)
ALT increased	4 (17)	3 (13)	1 (4)	1 (4)	5 (10)	4 (8)
Pneumonitis	4 (17)	2 (8)	2 (8)	1 (4)	6 (12)	3 (6)
Fatigue	13 (54)	2 (8)	11 (44)	1 (4)	24 (49)	3 (6)
Rash	5 (21)	1 (4)	7 (28)	1 (4)	12 (25)	2 (4)
Amylase increased	3 (13)	1 (4)	3 (12)	1 (4)	6 (12)	2 (4)
Adrenal insufficiency	2 (8)	1 (4)	2 (8)	1 (4)	4 (8)	2 (4)
Lymphopenia	1 (4)	1 (4)	1 (4)	1 (4)	2 (4)	2 (4)

AEs related with Nivolumab plus Ipilimumab

	Nivolumab 1 mg/kg + ipilimumab 3 mg/kg (n = 24) (n = 25		ab 1 mg/kg		tal : 49)	
Treatment related AE, n (%)	All grades	Grade 3–4	All grades	Grade 3-4	All grades	Grade 3–4
Pts with any treatment- related AE	22 (92)	14 (58)	21 (84)	11 (44)	43 (88)	25 (51)
Diamhea	00				(35)	5 (10)
Colitis	32	-50%	Grade	3-4	10)	4 (8)
Lipase increased	070/		1	•	16)	4 (8)
AST increased	37% d	iscon	tinuat	lon ra	te 10)	4 (8)
ALT increased		Teles		^	10)	4 (8)
Pneumonitis		loler	able?	:	12)	3 (6)
Fatigue	13 (54)	2 (8)	11 (44)	1 (4)	24 (49)	3 (6)
Rash	5 (21)	1 (4)	7 (28)	1 (4)	12 (25)	2 (4)
Amylase increased	3 (13)	1 (4)	3 (12)	1 (4)	6 (12)	2 (4)
Adrenal insufficiency	2 (8)	1 (4)	2 (8)	1 (4)	4 (8)	2 (4)
Lymphopenia	1 (4)	1 (4)	1 (4)	1 (4)	2 (4)	2 (4)

Background

1.- Introduction
 2.- PD-1/PD-L1 blockade

 2.1.- Efficacy overview
 2.2.- Toxicity profile

 3.- Patient selection
 4.- Conclusions

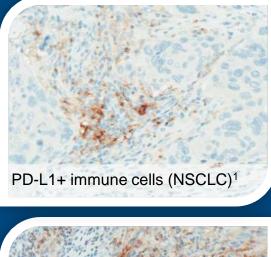
Histology is not Predictive for Response

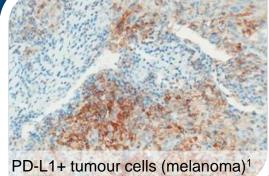
	Squamous Carcinoma	Non SCC
Nivolumab (PD-1)	16.7% (9/54)	17.6% (13/74)
Nivolumab + platinum doublet chemotherapy	~33% (4/12)	~ 47% (7/15)
BMS-936559 (PD-L1)	8% (1/13)	11% (4/36)
MPDL3280A (PD-L1)	33% (3/9)	19% (6/31)
Pembrolizumab	18% (2/6)	23% (4/26)

Garon E, ESMO 2014; Brahmer J, ASCO 2014; Gettinger ASCO 2014; Soria JC, ESMO 2014

Anti PD1/PD-L1 Inhibitors: ORR by PD-L1 Status

	Anti PD1		Anti PD-L 1	
	MK-3475	Nivolumab	MEDI4736	MPDL3280A
All, N	236	129	58	53
RR	21%	17%	16%	23%
PD-L1 +	201 23%	33 15%	20 25%	26 31%
PD-L1 -	35 9%	35 14%	29 3%	20 20%

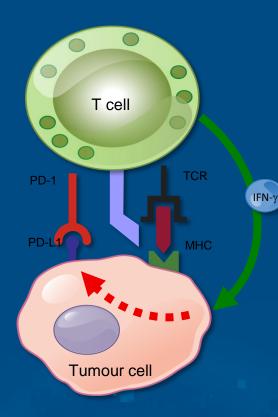

Garon E, ESMO 2014; Brahmer J, ASCO 2014; Gettinger ASCO 2014; Soria JC, ESMO 2014

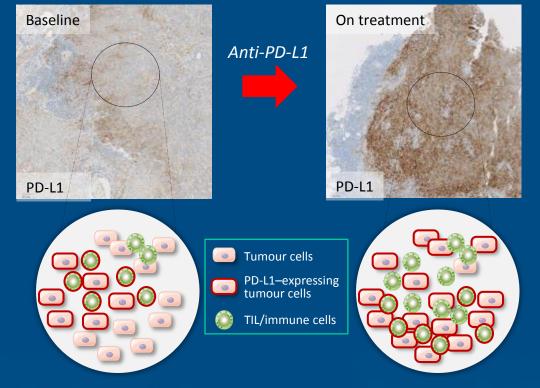

PD-L1 expression: analysis challenges

Agent	Assay	Analysis	Definition of positivity	PD-L1 expression
Nivolumab (anti-PD-1) ^{1–4}	Dako automated IHC assay (28-8 rabbit Ab)	• Archival FFPE	 1% and 5% cut-off among >100 evaluable tumour cells 	 56%: 1% cut-off 49%: 5% cut-off
	Analytically validated			
Pembrolizumab (anti-PD-1) ^{5,6}	Dako automated IHC assay (22C3 mouse Ab)	• Archival FFPE	 Tumour dependent: Melanoma > 1% NSCLC <u>PD-L1 (+):</u> Strong (≥50%) and weak staining (1–49%) <u>PD-L1 (–):</u> no staining 	・ ~25%: ≥50% staining ・ ~45–70%: ≥1% staining
MPDL3280A (anti-PD-L1) ^{7,8}	Ventana automated clinical research IHC assay	• Archival FFPE	 PD-L1 (+): IHC 3 (≥10%), IHC 2,3 (≥5%), IHC 1,2,3 (≥1%) PD-L1 (-): IHC 1, 0 or unknown 	 11%: IHC 3 75%: IHC 1, 0
MEDI-4736 (anti-PD-L1) ⁹	First-generation or Ventana IHC Automated Assay lopment)	• Archival FFPE	Not reported	Not reported

PD-L1 is broadly expressed tumour cells and tumour-infiltrating immune cells

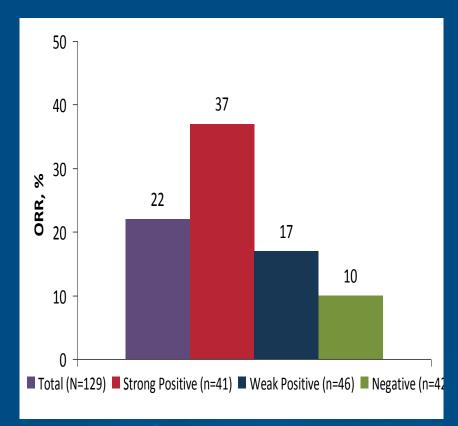
	Phase I study			
Tumour type	Immune cell*	Tumour cell [‡]		
NSCLC	26%	24%		
RCC	25%	10%		
Melanoma	36%	5%		
Bladder	27%	11%		
HNSCC	28%	19%		
Gastric cancer	18%	5%		
CRC	35%	1%		
Pancreatic cancer	12%	4%		




1. Kohrt, et al. SITC 2013; 2. Herbst, et al. ASCO 2014; 3. Powles, et al. ASCO 2014

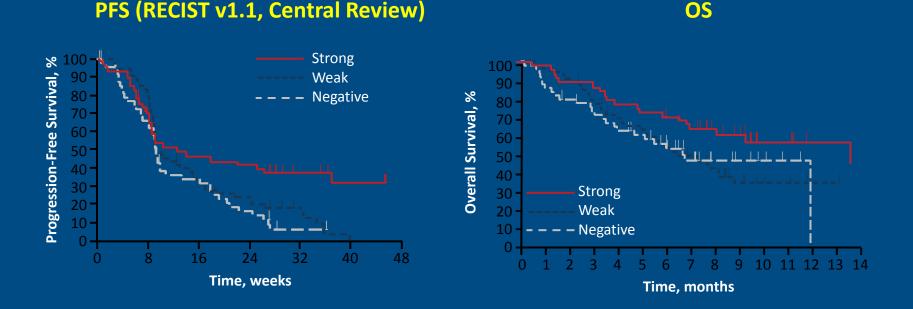
Adaptive immune resistance: increased tumour PD-L1 expression

Adaptive immune resistance


TTA NOTATION AND

Adaptive increase of PD-L1 expression in tumour cells may actually be an indicator of local tumourinfiltrating lymphocytes attacking the tumour

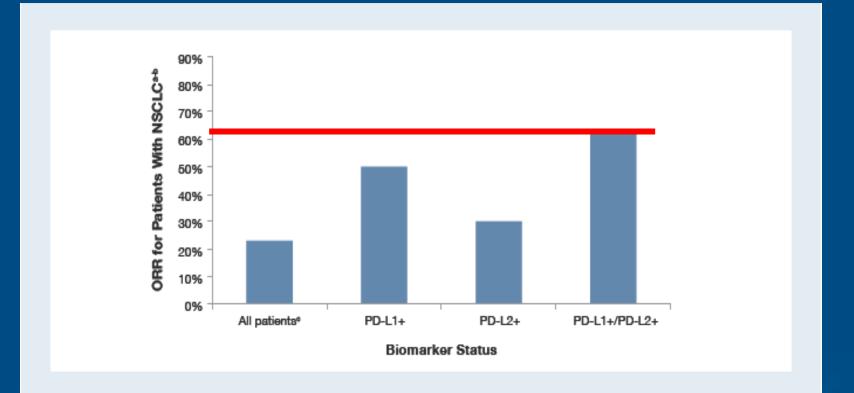
> Merelli, et al. Crit Rev Oncol Hematol 2014; Gerlinger, et al. N Engl J Med 2012


Maximum benefit by high PD-L1 IHC expression

Diagnostic Population ^a (n = 53)	ORR⁵ % (n/n)	PD Rate % (n/n)	
IHC 3	83% (5/6)	17% (1/6)	
IHC 2 and 3	46% (6/13)	23% (3/13)	
IHC 1/2/3	31% (8/26)	38% (10/26)	
All Patients ^c	23% (12/53)	40% (21/53)	

Garon EB, et al. ESMO 2014 Soria JC. ECCO 2013

Maximum benefit by high PD-L1 IHC expression


PFS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.52; 95% Cl, 0.33-0.80)

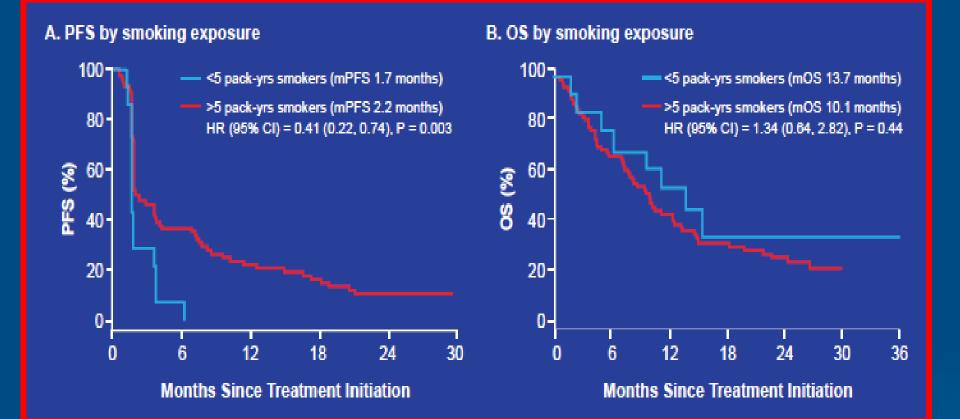
• OS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

Garon EB, et al. ESMO 2014

MPDL3280A Activity According to PDL-2 Expression

MPDL3280A was administered to patients by October 1, 2012, at ≥ 1 mg/kg; data cutoff was April 30, 2013.
 Includes investigator-assessed responses per RECIST v1.1, including 1 unconfirmed response.
 All patients include PD-L2–positive patients, PD-L2–negative patients and patients with unknown tumor PD-L2 status (n = 46).

Soria JC, et al. ESMO 2014


Anti PD1/PD-L1 Inhibitors: ORR by Smoking Status

	Anti	PD1	Anti PD-L 1		
	MK-3475	Nivolumab	MEDI4736	MPDL3280A	
All, N	236	129	58	53	
RR	21%	17%	16%	23%	
Smokers	165	75	?	43	
	27%	20%		26%	
Never/min	65	13	?	10	
smokers	9%	0%		10%	

Garon E, ESMO 2014; Hellman M ESMO 2014; Soria JC, ESMO

Nivolumab: PFS/OS by smoking status

Hellman MD, et al. ESMO 2014

Smoking influence by time exposure and therapy

Variable	ORR, % (n/N) [95% Cl] ^a	
Smoking exposure		
>5 pack-years	30 (20/66) [20, 43]	Smoking
≤5 pack-years ^b 0 (0/14) [0, 23]		Current
Time since quitting		Former
		Never
>15 yrs prior	26 (6/23) [10, 48]	Smoking
6–15 yrs prior	17 (2/12) [2, 48]	>5
1–5 yrs prior	46 (6/13) [19, 75]	≤5
Current smoker	27 (6/22) [11, 50]	Time sinc
		>15
0/never smoker	0 (0/10) [0, 31]	≤15

Total (N = 52)					
	N	ORR, n (%)	SD, n (%)	DCR, ^b n (%)	SD ≥21 wks, n (%)
Smoking status					
Current	3	1 (33)	1 (33)	2 (67)	1 (33)
Former	38	9 (24)	10 (26)	19 (50)	6 (16)
Never	11	1 (9)	3 (27)	4 (36)	3 (27)
Smoking exposure, ^c pack-yrs					
>5	27	5 (19)	8 (30)	13 (48)	5 (19)
≤5	14	1(7)	4 (29)	5 (36)	3 (21)
Time since quitting, ^d yrs					
>15	27	4 (15)	9 (33)	13 (48)	8 (30)
≤15	24	6 (25)	5 (21)	11 (46)	2 (8)

Gettinger SN, et al. CMSTO 2014 Rizvi NA, et al. CMSTO 2014

Anti PD1/PD-L1 Inhibitors: ORR by mutation profile

EGFR status	
Mutant	17 (2/12) [2, 48]
Wild-type	20 (11/56) [10, 32]
KRAS status	
Mutant	14 (3/21) [3, 36]
Wild-type	25 (9/36) [12, 42]

Gettinger SN, et al. CMSTO 2014

Background

1.- Introduction
2.- PD-1/PD-L1 blockade
2.1.- Efficacy overview
2.2.- Toxicity profile
3.- Patient selection
4.- Conclusions

Conclusions

1) The aim of cancer immunotherapy is to benefit patients exploiting cancer antigenicity and overcoming immune tolerance mechanisms

2) Cancer immunotherapy with anti-PD-L1/PD-1 therapies represent a highly promising approach in NSCLC

* durable responses and preliminary survival benefit are observed

* these therapies are generally well tolerated

3) Biomarkers allow for tailored therapy, however, identifying clinically relevant biomarkers for cancer immunotherapy is challenging

4) Understanding the molecular evolution and heterogeneity of tumours may lead to more effective use of new and existing therapies

* combination strategies p.e. anti-PD-L1/PD-1 therapies

