

The promises and pitfalls of liquid biopsy for the molecular portrait and monitoring of treatment response in NSCLC

Dr Matthew Krebs MD PhD MRCP

Consultant in Medical Oncology
Clinical Senior Lecturer in Experimental Cancer Medicine

15-18 April 2015, Geneva, Switzerland

DISCLOSURE SLIDE

Nothing to declare

THE AMBITION FOR PRECISION MEDICINE

monitoring of tumour clonal evolution

THE AMBITION FOR PRECISION MEDICINE

monitoring of tumour clonal evolution

BIOPSY IS GOLD-STANDARD FOR MOLECULAR CHARACTERISATION BUT...

- Invasive and sometimes difficult to obtain. NOT without risk
- Insufficient quantity of tissue from small biopsies / cytology
- Archival tumour may not reflect current status of tumour
- Tumour heterogeneity of primary and metastases
- Serial biopsies to assess PD activity/ molecular evolution of tumour/ resistance mechanisms are challenging

Circulating tumour cells

Circulating tumour DNA

CTC ISOLATION TECHNOLOGIES

IMMUNOMAGNETIC CAPTURE - CELLSEARCH

FDA Approved

CGH, DNA mutation, RTPCR

from the spots

ISOLATION BY SIZE - ISET

OTHER CTC TECHNOLOGIES

ISOFLUX

Parsortix

Clearbridge

Gilupi

CTCS AS A PROGNOSTIC BIOMARKER IN NSCLC PATIENTS

≥5 CTCs is prognostic

Median OS 8.1 vs 4.3 months HR 5.98 (95%CI 2.25-15.87), P<0.001

Independent prognostic factor (HR = 7.92) for OS in multivariate analysis

CTC change on treatment

	Change	Median OS
72% (13/18)	Decrease	8.3 months
17% (3/18)	Increase	3.3 months
11% (2/18)	No change	3.9 months

Krebs et al, Journal of Clinical Oncology, 2011

EXAMPLES OF CTCS AND CTM BY ISET IN NSCLC PATIENTS

CTM were observed in 15 (38%) of the 40 patients by ISET – not seen in matched CellSearch samples

All images 40x magnification CD45 immunostaining with haematoxylin counterstain

ALK GENE REARRANGMENT IN ISET ISOLATED CTCS

ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma

M. Ilie^{1,2,3,4,5†}, E. Long^{1,2,4†}, C. Butori⁴, V. Hofman^{1,2,3,4,5}, C. Coelle³, V. Mauro³, K. Zahaf⁴, C.H. Marquette^{1,2,6}, J. Mouroux^{1,2,7}, P. Paterlini-Bréchot⁸ &

Annals of Oncology

23: 2907-2913, 201

Detection of Circulating Tumor Cells Harboring a Unique ALK Rearrangement in ALK-Positive Non–Small-Cell Lung Cancer

Emma Pailler, Julien Adam, Amélie Barthélémy, Marianne Oulhen, Nathalie Auger, Alexander Valent, Isabelle Borget, David Planchard, Melissa Taylor, Fabrice André, Jean Charles Soria, Philippe Vielh, Benjamin Besse, and Françoise Farace

JOURNAL OF CLINICAL ONCOLOGY

31(18): 2273-2282, 2013

5/87 patients with *ALK* fusion disease. All 5 cases had strong ALK expression in CTCs by IHC and *ALK* gene rearrangement by FISH.

All *ALK* positive patients (n=18) had 4 or more *ALK* rearranged CTCs per ml of blood with unique 3'5' split pattern seen in CTCs

CIRCULATING TUMOUR CELL HETEROGENEITY

Questions

- Does the heterogeneity of CTCs reflect tumour heterogeneity
- Do the different populations of cells have unique driver mutations?
- Which of these survive and result in metastases?
- Single cell molecular analysis may help address these issues

Gerlinger et al, New England Journal of Medicine, 2012

FROM CTC ENRICHMENT TO SINGLE CELL ANALYSIS

Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients

Xiaohui Ni^{a,b,1}, Minglei Zhuo^{c,1}, Zhe Su^{a,1}, Jianchun Duan^{c,1}, Yan Gao^{a,1}, Zhijie Wang^{c,1}, Chenghang Zong^{b,1,2}, Hua Bai^c, Alec R. Chapman^{b,d}, Jun Zhao^c, Liya Xu^a, Tongtong An^c, Qi Ma^a, Yuyan Wang^c, Meina Wu^c, Yu Sun^e, Shuhang Wang^c, Zhenxiang Li^c, Xiaodan Yang^c, Jun Yong^b,

110:21083-21088, 2013

PROS AND CONS OF CTC ANALYSIS

PROS

- An excellent research tool
- Powerful for investigating tumour heterogeneity and tumorigenicity (CTC derived xenografts)
- Ability to assess morphology, protein expression and genetic aberrations all in the same cell
- May help better understand mechanisms of metastasis and identify novel treatment targets

CONS

- Lack of validation/qualification for most technologies
- Expensive
- Wide variations in CTC definition and technologies
- Difficulty in reproducing assays across multiple sites limits 'routine' clinical use
- Need joined up approach across CTC community to validate assays

CIRCULATING TUMOUR DNA

Schwarzenbach et al, Nat Rev Cancer, 2011

Scorpion amplification refractory mutation assay (SARMS)

Sensitivity down to 1-2%

DETERMINATION OF EGFR STATUS BY ctDNA IN LUNG CANCER

- Phase IV study of gefitinib in EGFR mutation positive advanced NSCLC
- Compared EGFR status in tumour block and plasma using Scorpion ARMS assay

- 1033/1060 had evaluable tumour
- Mutation status determined for 859 patients
- 118/859 (13.7%) had EGFR mutation

- 803/1060 had 2 baseline plasma samples
- Mutation status determined for 784 patients
- 82/784 (10.5%) had EGFR mutation

Concordance = 94.3%
Sensitivity 66%
Specificity 100%

DETERMINATION OF EGFR STATUS BY ctDNA IN LUNG CANCER

- Phase IV study of gefitinib in EGFR mutation positive advanced NSCLC
- Compared EGFR status in tumour block and plasma using Scorpion ARMS assay

IRESSA receives CHMP positive opinion to include blood based diagnostic testing in European label

Fri, 26th Sep 2014

In cases where tumour material is not available, gefitinib may be started if EGFR mutation positive from ctDNA

DIGITAL PCR AND DISEASE MONITORING IN EGFR +VE DISEASE

 DIGITAL PCR increases sensitivity further and provides quantification of mutated alleles

♠ in mutated ctDNA occured upto 16 weeks ahead of confirmed PD

T790M detectable ahead of clinical PD

FAILURE TO ERADICATE ctDNA = WORSE OS

Clin Cancer Res. 2015 Mar 31. pii: clincanres.2594.2014. [Epub ahead of print]

Detection and Dynamic Changes of EGFR Mutations from Circulating Tumor DNA as a Predictor of Survival Outcomes in NSCLC Patients Treated with First-line Intercalated Erlotinib and Chemotherapy.

Mok TS¹, Wu YL², Soo Lee J³, Yu CJ⁴, Sriuranpong V⁵, Sandoval-Tan J⁶, Ladrera G⁷, Thongprasert S⁸, Srimuninnimit V⁹, Liao M¹⁰, Zhu Y¹¹, Zhou C¹², Fuerte F¹³, Margono B¹⁴, Wen W¹⁵, Tsai J¹⁶, Truman M¹⁷, Klughammer B¹⁸, Shames DS¹⁹, Wu L²⁰.

Group A = no mutation identifiable in ctDNA at baseline

Group B = EGFR mutation eradicated by 10 weeks on EGFR inhibitor

Group C = EGFR mutation not eradicated by 10 weeks on EGFR inhibitor

QUANTIFICATION OF ctDNA IS COMPLEMENTARY TO IMAGING

Novel sensitive method for ctDNA quantification (CAPP-seq)

REISTANCE MECHANISMS FROM ctDNA – WHOLE EXOME SEQUENCING

'Genome-wide representation of tumour in plasma'

'Increased representation of mutant alleles in association with therapy resistance'

'A new paradigm for the study of clonal evolution'

PROS AND CONS OF ctDNA ANALYSIS

PROS

- Various clinical applications of ctDNA –quantification and profiling
- DNA easy to extract and profiling assays are much more amenable to validation and qualification than CTCs
- Straight-forward blood test
- Already in clinic with EGFR mutation testing and gefitinib

CONS

- Different methods across different centres
- Quantification and whole exome sequencing are still in their infancy with reports including relatively small numbers of patients
- Technically challenging to look at whole exome from ctDNA
- May not be suitable for every patient – ? Stage IV/tumour burden; otherwise need biopsy
- Released from apoptosing cells -? relevance

<u>TUMOUR CHARACTERISATION TO GUIDE EXPERIMENTAL</u> <u>TARGETED THERAPY – THE TARGET TRIAL</u>

To molecularly profile ctDNA of all patients referred for consideration of phase 1 clinical trials To select a relevant trial based on ctDNA 'actionable aberrations'

ACKNOWLEDGEMENTS

Christie Experimental Cancer Medicine Team

Prof Andrew Hughes Dr Emma Dean

CRUK Manchester Institute

Prof Caroline Dive
Dr Ged Brady
Prof Richard Marais
Jian Mei Hou

Christie Lung Team

Dr Fiona Blackhall
Dr Raffaele Califano
Dr Yvonne Summers

RECRUITNG CLINICAL FELLOWS AND SENIOR LECTURERS TO ECMT IN MANCHESTER

Contact: matthew.krebs@manchester.ac.uk

15-18 April 2015, Geneva, Switzerland

