Improving stage III outcome Any perspective?

De Leyn, MD, PhD **P**.

Chairman Department Thoracic Surgery University Hospitals Leuven Belgium

LEUVEN LUNG CANCER GROUP

Department of Thoracic Surgery

Department of Pneumology

Department of Radiotherapy

Department of Nuclear Medicine

Department of Radiology

P. De Leyn, W. Coosemans, H. Decaluwé, L. Depypere Ph. Nafteux, D. Van Raemdonck, H. Van Veer

J. Vansteenkiste, K. Nackaerts, C. Dooms

D. De Ruysscher, S. Peeters

C. Deroose

W. Dewever

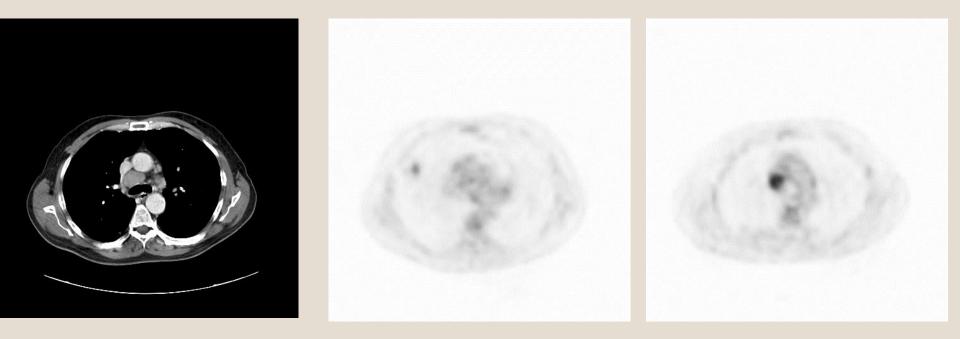
Improving stage III outcome Any perspective?

- Introduction
- Multidisciplinary discussion with upfront stratification
- N2 disease
- Pancoast and clinical T3-T4 tumours
- Volume and experience
- Conclusions

Stage III : heterogenous

Stage grouping			
Stage IIIA	T1,T2	N2	M0
	Т3	N1,N2	M0
	Т4	NO ,N1	MO
Stage IIIB	Т4	N2	MO
	Any T	N3	M0

7th edition (2009) IASLC/UICC TNM staging

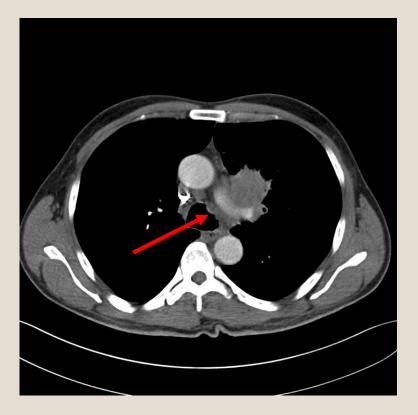

Improving stage III outcome Any perspective?

- Multidisciplinary discussion/staging and personalised treatment
- Upfront stratification
 - Baseline resectable (preoperatively proven single level N2 disease)
 - Potentially resectable with increased risk of incomplete resection (pancoast tumors, central T3-T4)
 - Unresectable
- Experience of center/volume

Baseline resectable N2 disease

Individual LN's can be measured

Unresectable N2 disease (no role for surgical multimodality)



Individual LN's cannot be measured

Unresectable N2 disease (no role for surgical multimodality)

Individual LN's cannot be measured

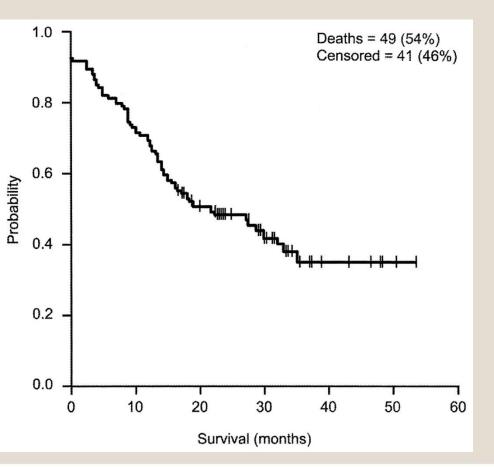
Extracapsular spread : baseline unresectable N2 disease

Importance of baseline staging

Potentially resectable with increased risk of incomplete resection

Induction chemoradiotherapy

Potentially resectable N2 disease


- Large evidence from single center studies (good survival with acceptable morbidity/mortality in selected patients)
- One prospective randomised trial
- Downstaging of mediastinal LN is important

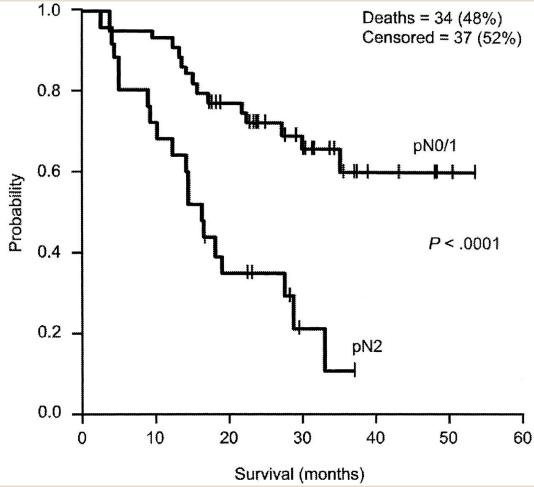
Detterbeck 2001, diagnosis and treatment of Lung Cancer

N2 NSCLC Swiss experience

N= 90

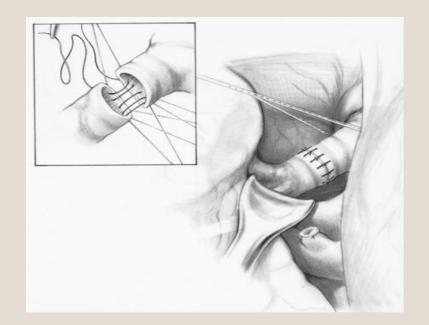
Resectability : 83% (75) Complete resection (R0) : 70% (63) Operative mortality : 3%

Median overall survival : 35 m


36% of operated patients are alive and tumor-free (3 years after diagnosis)

Betticher, JCO 2003,21:1752-1759 Betticher, Brit Journal of cancer, 2006:1009-1106

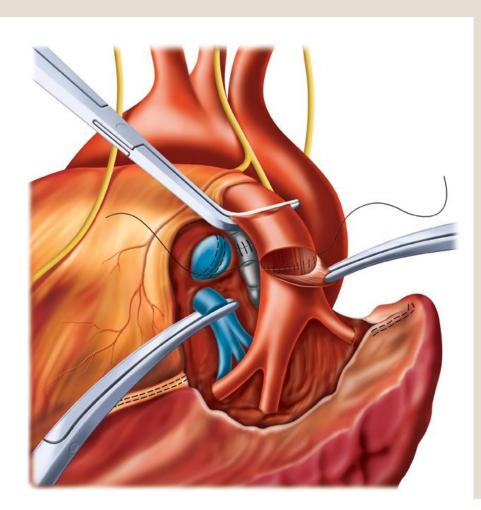
N2 NSCLC Swiss experience


Betticher, JCO 2003,21:1752-1759 Betticher, Brit Journal of cancer, 2006:1009-1106

UZ Leuven Data 2000-2006

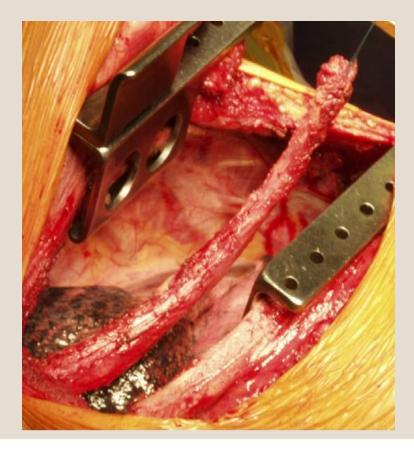
Surgical multimodality treatment for IIIA N2 NSCLC

- Prospective consecutive surgical database (2000-2006) N=92
- Histologically proven N2 disease (potentially resectable)
- Response or stable disease after induction chemotherapy
- Surgical exploration
- R0 resection : 63% Pneumonectomy : 24% Sleeve resection : 13%
- Hospital mortality: 2.3%



Decaluwé et al., Eur J Cardiothorac Surg, 2009;433-439

Arterial sleeve resection



Bronchusprotection

Bronchusprotection 78 - Intercostal muscle 60 Pericard fat 11 – Pleura 7

Decaluwé et al, Eur J Cardiothor Surg, 2009;36:433-9

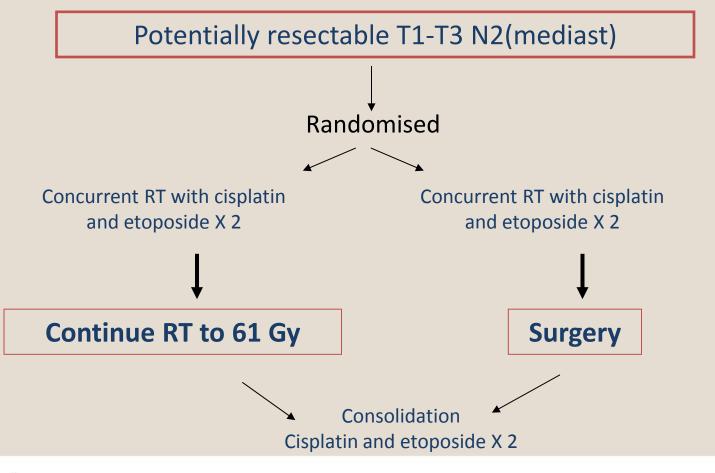
UZ Leuven Data 2000-2006 Surgical multimodality treatment for IIIA N2 NSCLC

In-hospital mortality

2.3%

	5 Yrs Survival
Overall survival after resection	37%
RO	43%
pT0-1	65%
Single level positive at initial mediastinoscopy	43%
pN0-1	49%
pN2	27%

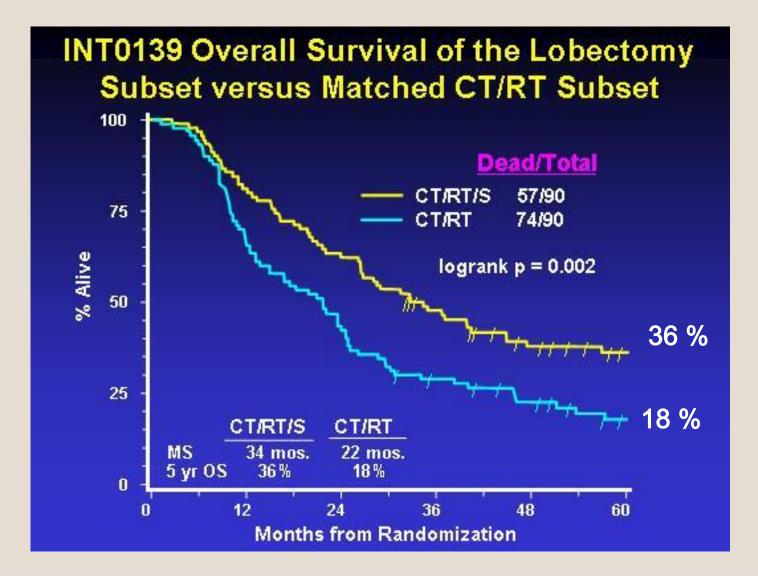
Decaluwé et al., Europ J Cardiothorac Surg, 2009;36:433-9


Potentially resectable N2 NSCLC CT-RT vs surgical multimodality Tx? one prospective randomized trials

Lung Intergroup trial R0139

Lung Intergroup Trial R0139

Albain, Lancet 2009;374:379-86

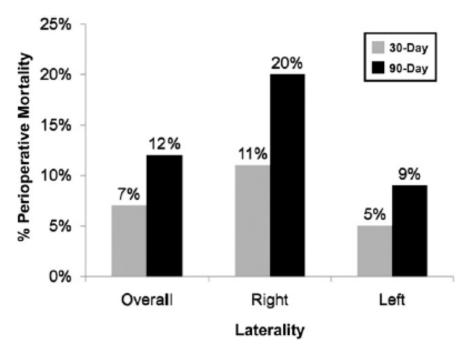

Intergroup trial

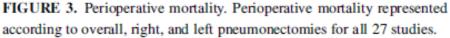
	CT+S	CT+ RT	
pNO	46%		
R0	88%		
Overall survival	27%	20%	p=NS
(5 year)			
progression-free survival (2 year)	22%	11%	P=0.017
Treatment related	7%	1.6%	
Mortality (30 day)	Lobect : 1%		
	Pneum : 26%		
	R Pneum : 38%		

Albain, Lancet 2009;374:379-86

Albain, Lancet 2009;374:379-86

Perioperative mortality after neoadjuvant therapy and pneumonectomy for NSCLC


- Meta-analysis (1990-2010)
- Postoperative mortality after neoadjuvant therapy ad pneumonectomy
- N = 27 studies (including intergroup trial)
- 30-day mortality 7%
- 90-day mortality 12%



Kim et al., J Thorac Cardiovasc Surg 2012;143:55-63

Perioperative mortality after neoadjuvant therapy and pneumonetomy for NSCLC

Lower than mortality intergroup trial Pneumonectomy : 12% vs 26% Right pneumonectomy : 20 % vs 38%

Kim et al., J Thorac Cardiovasc Surg 2012;143:55-63

Effect of preoperative chemoradiation in addition to preoperative chemotherapy in stage III NSCLC

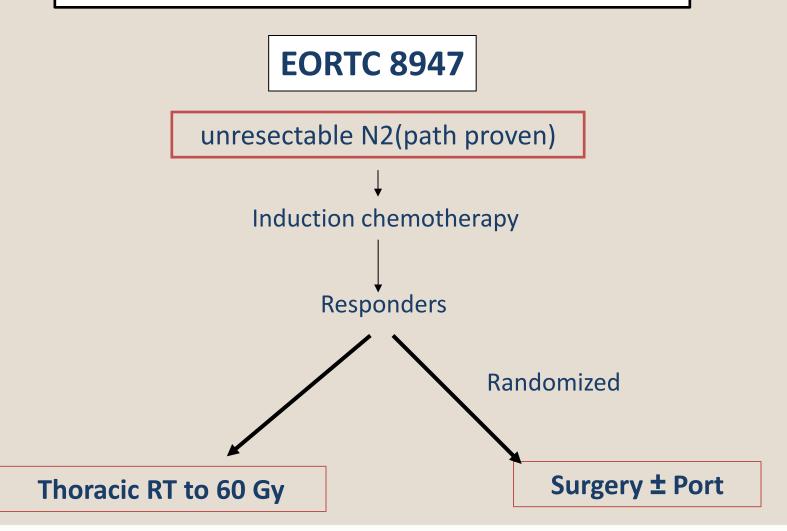
Mortality after surgery

	Chemoradiation (142)	Chemotherapy (154)
Overall	9%	5%
Lobectomy or bilobectomy	7.5%	2.3%
Pneumonectomy	14%	6%

Thomas et al, Lancet Oncol 2008;9:636-648

Effect of preoperative chemoradiation in addition to preoperative chemotherapy in stage III NSCLC

Mortality after surgery


	Chemoradiation (13) 9%	Chemotherapy (6) 5%
Pneumonia	4	3
Empyema	1	0
Stump insufficiency	5	1
Pulmonary haemorrhage	2	0
Pulmonary embolism	1	0
Heart failure	0	1
Apoplectic stroke	0	1

Thomas et al, Lancet Oncol 2008;9:636-648

Baseline unresectable N2 disease

Van Meerbeeck, J Natl Cancer Inst 2007;99:442-50

EORTC 08941

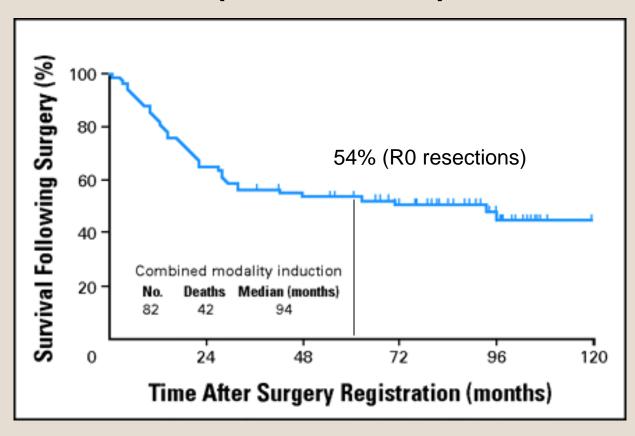
	CT+S (± Port)	CT+ RT	
pNO	42%		
R0	50%		
Overall survival (5 year)	16%	14%	p=NS
progression-free survival (2 year)	26.5%	24.2%	P=NS
Treatment related mortality	6%	NA	

Van Meerbeeck, J Natl Cancer Inst 2007;99:442-50

Potentally resectable with increased risk of incomplete resection : Pancoast tumor

Major challenge : control of locoregional disease

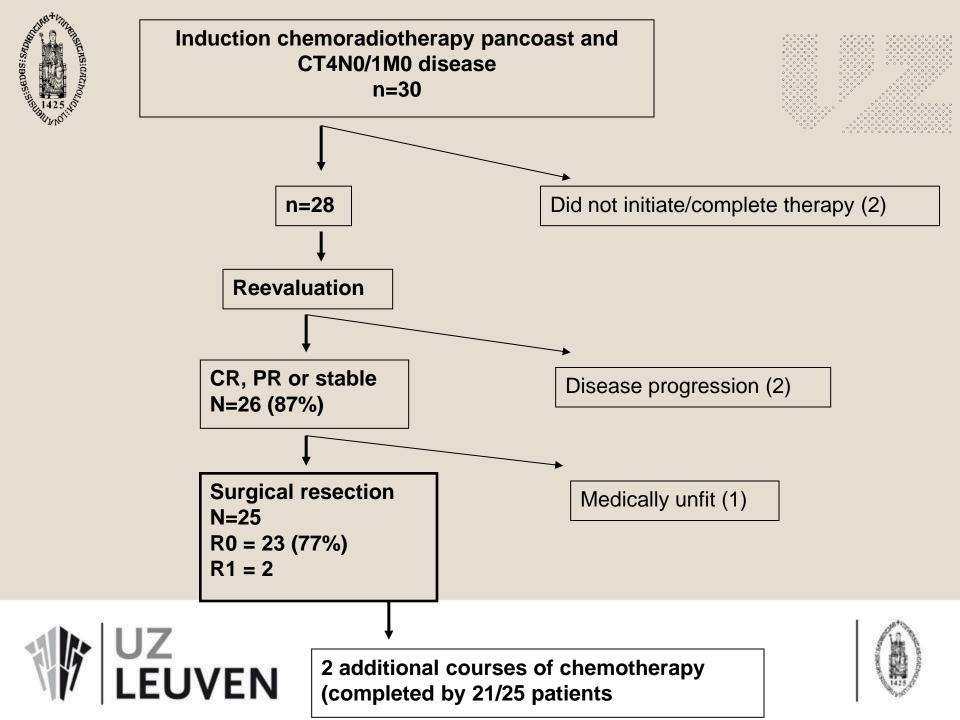
- Inclusion : cT3-T4NO (mediast : neg) n=110
- Concurrent chemoradiotherapy (cis, etoposide; 45 gy)
- Surgery in responders and stable disease



- Complete resectability : 75%
- Pathological complete response or minimal microscopic disease : 65%
 - Overall survival (5-yr) : 44%
 - Survival in R0 resections (5-yr) : 54%

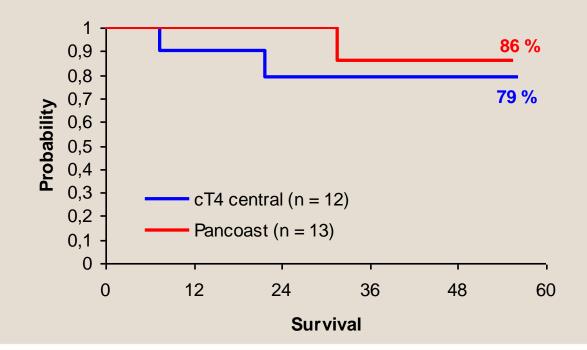
- Pathological complete response : 32 (36%)
 - 17 response on CT scan
 - 15 stable disease on CT scan
- Both patients with response and stable disease should be explored. Pain is important prognostic sign
- Induction chemoradiotherapy is standard of care in patients with pancoast tumors. Experience of team

Induction chemoradiotherapy for pancoast and cT4 tumors



- 2003 october 2007
- 30 patients (prospective, consecutive)
- cT4 tumor (50%) Pancoast (cT3-4) (50%)
 - Pulmonary artery
 - Atrium
 - Caval vein
 - Vertebra
 - Esophagus
 - Carina : not included!
- N0 M0 (PET of CT/PET and mediastinoscopy)

De Leyn et al, J Thorac Oncol 2009;4:62-68



Results

• Survival

Resected patients (n=25)

De Leyn et al, J Thorac Oncol 2009;4:62-68

Influence of hospital volume on survival after resection for lung cancer

Postoperative complications and survival in 76 hospitals in United States

2118 resections for lung cancer (1985-1996)

	1-8 (n=34)	9-14 (n=14)	15-19 (n=10)	20-66 (n=16)	67-100 (n=2)	P value
% of all hospitals	45%	18%	13%	21%	3%	
Postoperative complications	44%	28%	35%	32%	20%	<0.001
Overall 5-Yr survival	33%	36%	39%	40%	44%	<0.001

Bach et al. N Engl J Med 2001;345:181-188

High procedure volume is strongly associated with improved survival after lung cancer surgery

- Analysis of 134.293 NSCLC in England (2004-2008)
- 12.862 (9,6%) surgical resection
- Analysis of relation between hospital volume and survival

Lüchtenborg et al., JCO 2013;31:3141-3146

High procedure volume is strongly associated with improved survival after lung cancer surgery

- Increasing volume ≈ increasing survival
- Increasing volume ≈ increasing resection rate
- Increasing volume ≈ increasing percentage of resections in patients with higher comorbidity

High procedure volume is strongly associated with improved survival after lung cancer surgery

Hospital Volume (No. of procedures per year)	0 to 30 Days		31 to 365 Days		> 365 Days	
	HR	95% CI	HR	95% CI	HR	95% CI
< 70	1.00	_	1.00	_	1.00	_
70 to 99	0.81	0.58 to 1.13	0.82	0.70 to 0.96	0.95	0.83 to 1.0
100 to 129	0.75	0.52 to 1.08	0.92	0.78 to 1.09	0.94	0.81 to 1.0
130 to 149	0.91	0.64 to 1.31	0.78	0.66 to 0.93	0.97	0.84 to 1.1
≥ 150	0.58	0.38 to 0.89	0.80	0.67 to 0.95	0.84	0.71 to 0.9
x ^{2*}		3.24		5.93		2.67
Р		.07		.01		.10

Lüchtenborg et al., JCO 2013;31:3141-3146

- Marked heterogenity in stage III disease
- Patients should be multidisciplinary discussed (both baseline and after induction treatment) by experienced pneumologist/oncologist, radiation oncologist, thoracic surgeon
- Upfront stratification
 - Baseline resectable (single level N2 disease, non-bulky)
 - Potentially resectable with increased risk of incomplete resection (pancoast tumors, central T3-T4)
 - Unresectable

- Therapy for stage III must be individualised
- Surgical multimodality treatment for resectable pancoast tumor and in selected patients with N2 disease. For N2 disease no survival benefit of induction chemoradiotherapy compared to induction chemotherapy
- Right pneumonectomy only in selected patients
- Experience of center is important. Need for centralisation

Tank you!

K.U. Leuven, Belgium University Hospital Gasthuisberg Leuven Lung Cancer Group (www.LLCG.be)