Selection of patients for multimodality treatment decision

Wilfried Ernst Erich Eberhardt, MD

Department of Medical Oncology, West German Cencer Centre, Essen, University Duisburg-Essen, E-mail: wilfried.eberhardt@uni-duisburg-essen.de

Disclosures

- Honoraria for advisory boards
 - BMS, Celgene, Teva, Boehringer, Novartis, Roche,
 Eli Lilly, Astra Zeneca, Bayer, GSK, Merck, Daiichi,
 Pfizer, Medimmune, Amgen
- Honoraria for educational lectures
 - BMS, Teva, Boehringer, Roche, Novartis, Pfizer, Eli Lilly, Astra Zeneca, Bayer, Merck, Amgen
- Research funding
 - Eli Lilly

Introduction

- multimodality treatment of stage III NSCLC has a clear curative intent
- five-year survival rates between 10 and 40% can be achieved by radical treatment strategies including local treatments such as S and RTx
- based on the broad heterogeneity of patients within stage III treatment descisions have to be

Eberhardt W, et al, ELCC 2015

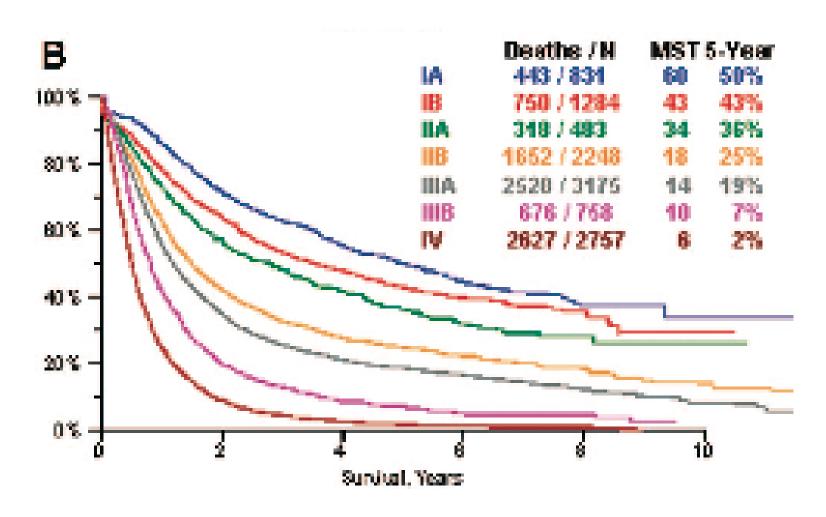
15-18 April 2015, Geneva, Switzerland

ndividualized

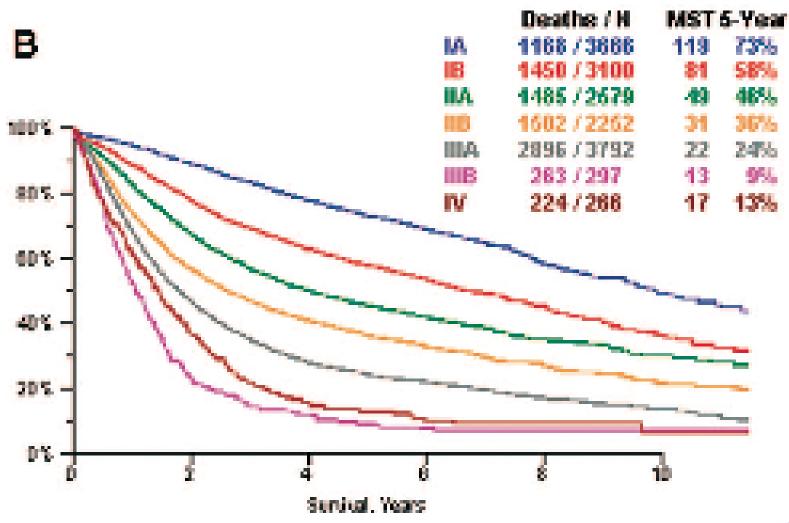
- important prognostic factors I accepted factors
 - stage (IIIA vs IIIB) (UICC)
 - T-factor (IASLC/UICC) (including tumor diameter/volume)
 - N-factor (IASLC/UICC) (N3 vs N2 vs N1 vs N0)
 - specific TN-groups T4N0/1 versus others
 - performance status 0/1 versus 2
 - weight loss

Eberhardt W, et al, ELCC 2015

- IASLC Staging classification -


•	0	Tis	N0	MO
•	IA	T1a/b	N0	MO
•	IB	T2 <mark>a</mark>	N0	MO
•	IIA	T1a/b T2a	N1	MO
•		T2b	N0	MO
•	IIB	T2b	N1	MO
•		T3	N0	MO
•	IIIA	T1a/b/2a/b	N2	MO
•		T3	N1/2	MO
•		T4	N0/1	MO
•	IIIB	jedes T	N3	MO
•		T4	N2	MO
				_

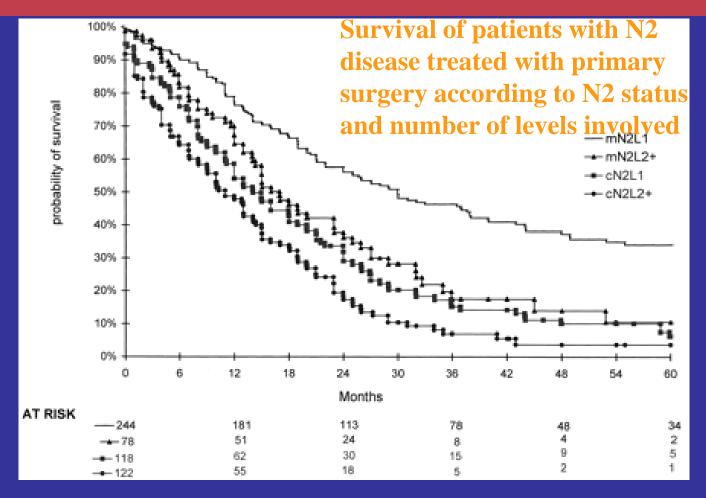
 $\frac{IV_{_{02/17/12}}}{Goldstraw\ et\ al,\ J\ Thorac\ Oncol\ 2007}$ jedes T jedes N jedes T jedes N jedes N jedes T jedes N jed



Overall survival based on clinical staging

Overall survival based on pathological staging

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER


	1 Yr	5 Yrs		HR	Р
cN0	84%	50%			
cN1	77%	39%	vs cN0:	1.37	<.0001
cN2	71%	31%	vs cN1:	1.24	<.0001
cN3	63%	21%	vs cN2:	1.31	<.0001

	1 Yr	5 Yrs		HR	P
pN0	86%	56%			
pN1	77%	38%	vs pN0:	1.63	<.0001
pN2	69%	22%	vs pN1:	1.51	<.0001
pN3	49%	6%	vs pN2:	1.81	<.0001

Rush et al, J Thoracic Oncol 2007; 2: 603-612

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

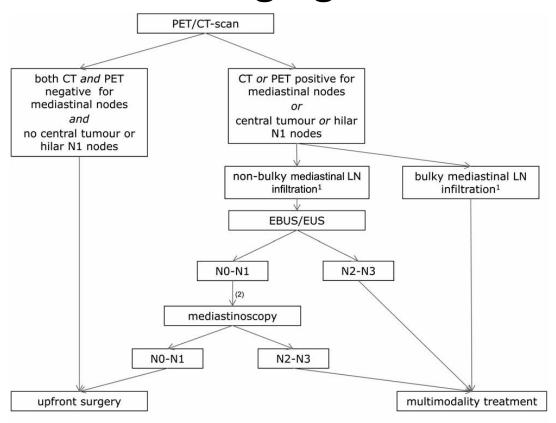
Andre, Grunenwald et al, JCO 2000; 18: 2981-2989 2000

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Subsets of Stage IIIA(N₂)*

Subset Description

IIIA₁ Incidental nodal metastases found on final pathology examination of the resection specimen


IIIA₂ Nodal (single station) metastases recognized intraoperatively

IIIA₃ Nodal metastases (single or multiple station) recognized by prethoracotomy staging (mediastinoscopy, other nodal biopsy, or PET scan)

IIIA₄ Bulky or fixed multistation N2 disease

* adapted from Ruckdeschel

Suggested algorithm for lymph node staging

¹ Category description according to CT (and PET) imaging as in ACCP staging document [Chest 143 Suppl 5:211S-250S, 2013], see text for more details.

Vansteenkiste, et al, ESMO clinical practice guidelines, Ann Oncol 2013 and ACCP guidelines Chest 2013
15-18 April 2015, Geneva, Switzerland

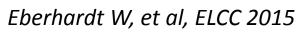
² A negative result of EBUS/EUS is usually confirmed by mediastinoscopy, as the latter has the highest negative predictive value.

Patients subsets and substages included into stage III NSCLC

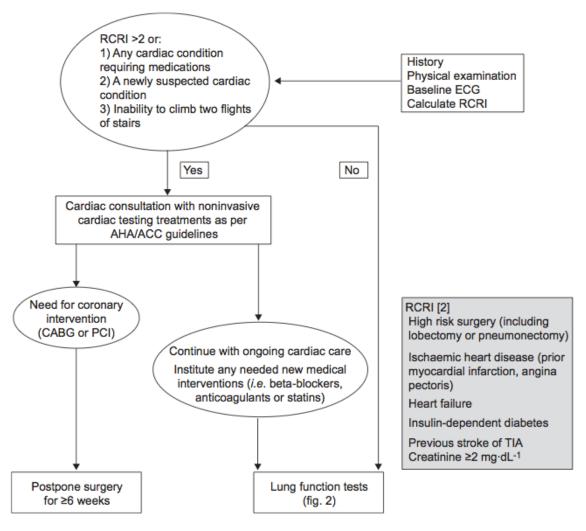
Table 2. Patient subsets and substages included into stage III non-small-cell lung cancer

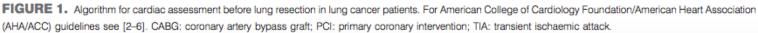
IASLC/UICC 7	Definition	TNM subsets	Description	Robinson Classification
IIIA	incidental N2	T1-3 N2	N2 found at surgery	
	(unforeseen N2)		macroscopic N2	IIIA1
			microscopic N2	IIIA2
IIIA	potentially resectable N2	T1-3 N2	minimal N2/single station at staging	IIIA3
IIIA	potentially resectable N2	T1-3 N2	Pancoast tumour subsets, T3-4 N1, T3	
	But: risk of incomplete resection		N2 selective centrally located IIIA(N2)	IIIA3
IIIA	unresectable N2	T1-3 N2	bulky and/or multilevel N2 at staging	IIIA4
IIIA	potentially resectable T4	T4 N0-1	pulmonary artery, carina, spine,	
	But: risk of incomplete resection		trachea, vena cava, right atrium	
TIIB	unresectable T4	T4 N0-1	oesophagus, heart, aorta, pulmonary	
		T4 N2	veins	
IIIB	unresectable N3	T1-4 N3	N3 nodes at staging	

Eberhardt, et al, ESMO Consensus, accepted for publication Ann Oncol 2015



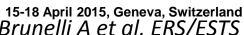
- Important prognostic factors II accepted factors
 - pulmonary function (COPD grade, FEV1, COdiffusion capacity, spiroergometric evaluation)
 - cardiac function (FS, calculated EF)
 - smoking cessation
 - potential resectability (?) specific T4 groups
 - Pancoast tumors (superior sulcus) versus others





Cardiac assessement

15-18 April 2015, Geneva, Switzerland
Brunelli A et al, ERS/ESTS guidelines on fitnes for radical therapy ERJ 2009



Cardiopulmonary function testing

Brunelli A et al, ERS/ESTS guidelines on fitnes for radical therapy ERJ 2009

Risk factors for radical treatment

TABLE 3

Admission criteria in the high dependency unit: moderate- to high-risk patients

Pre-operative comorbidities and functional status

Coronary artery disease (angina pectoris, prior myocardial infarction,

myocardial revascularisation)

Cardiac insufficiency (left ventricular ejection fraction <40%,

history of heart failure)

Cardiac arythmias or heart conduction block

Renal dysfunction (plasma creatinine >220 mg·dL⁻¹)

Symptomatic peripheral arterial or cerebrovascular disease

Severe COPD (FEV1 <50% pred)

Anticipated need for noninvasive ventilation (e.g. central or

obstructive sleep apnoea)

Liver dysfunction (Child-Turcotte-Pugh score class A and or MELD score >8)#

Maximal Vo₂ max <15 mL·kg⁻¹·min⁻¹

Pneumonectomy, bilobectomy; bilateral lung resection

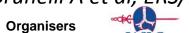
Extended lung resection involving the diaphragm, pericardium or parietal wall

Intra-operative major bleeding

Early post-operative time course in the post-anesthaesia care unit

Unstable haemodynamics

ECG signs of myocardial ischaemia

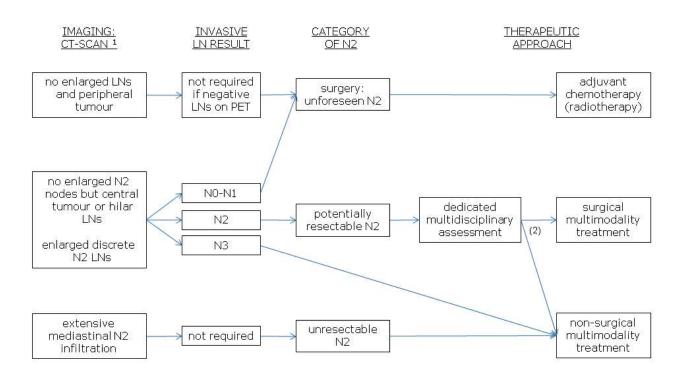

Need for vasopressor support (other than related to epidural anaesthesia)

Fluid/blood replacement

Need for noninvasive ventilation support

*: according to [185]. COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume in 1 s; MELD: model for end-stage liver disease; Vo₂: oxygen consumption.

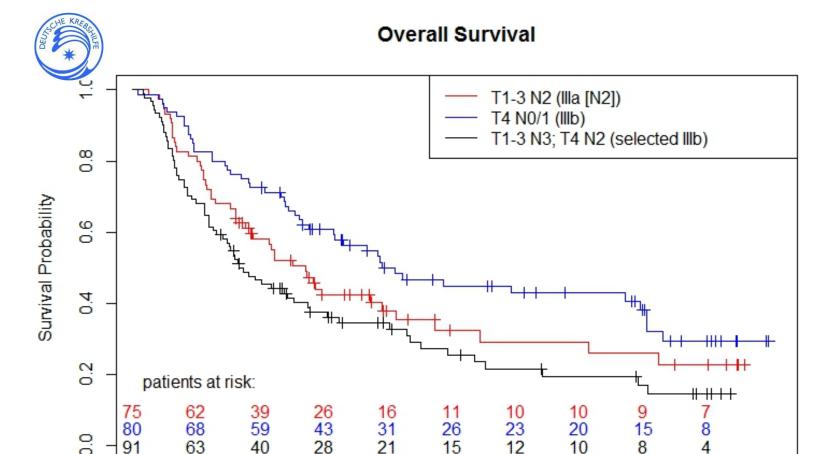
15-18 April 2015, Geneva, Switzerland Brunelli A et al, ERS/ESTS quidelines on fitnes for radical therapy ERJ 2009



Heterogeneity of stage IIIA

Category description according to CT imaging as in ACCP staging document [Chest 143 Suppl 5:2115-250S, 2013], see text for more details.

Vansteenkiste, et al, ESMO clinical practice guidelines, Ann Oncol 2013



² See text for factors involved in the choice between non-surgical and surgical multimodality treatment.

Results – TN-groups

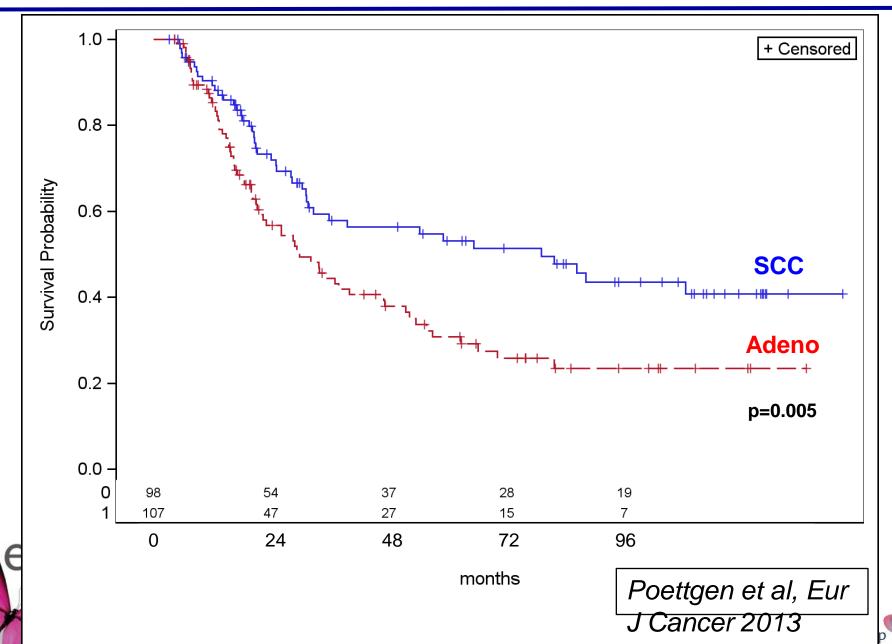
15-18 April 2015, Geneva, Switzerland

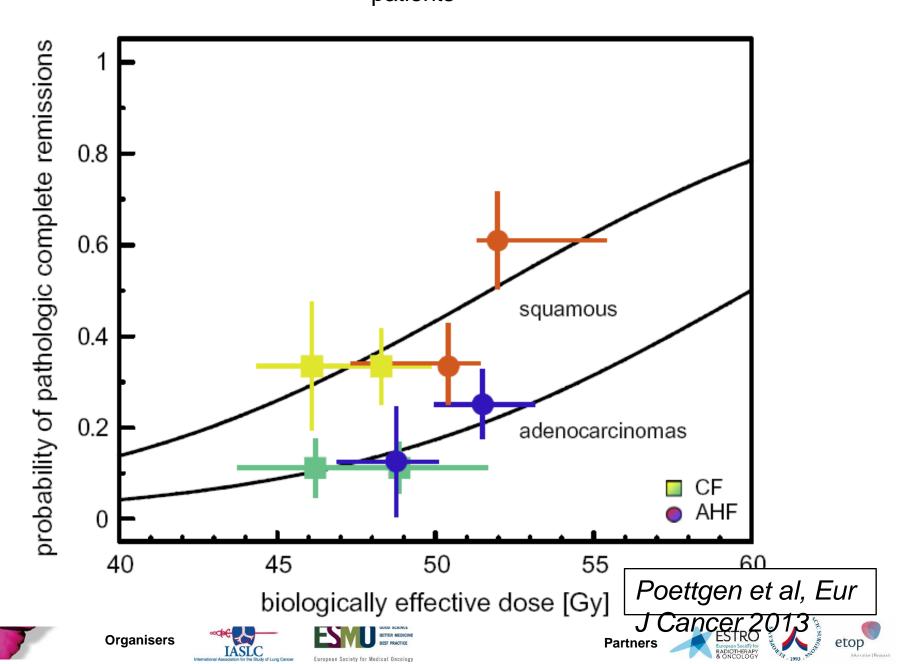
Eberhardt, et al, JCO 2014 ABSTRACT 7610

Months

- Important prognostic factors III not fully accepted but existing data
 - pretreatment LDH
 - FDG-PET-SUV value of primary tumor
 - histopathology: squamous cell carcinoma vs large cell carcinoma versus adenocarcinoma
 - high chance for complete resection (R0) vs high chance of incomplete resection (R1,R2)

Eberhardt W, et al, ELCC 2015





Overall Survival by Histology

neoadjuvant RT/CTx in NSCLC, histopathologic complete response in 239 patients

- Important prognostic factors IV no clear evidence available
 - adenocarcinoma: driver mutations
 - comorbidity score (Charlson ?)
 - age (conflicting results! no clear boundary)
 - ability to deliver cisplatinum versus carboplatin (?)

Eberhardt W, et al, ELCC 2015

- treatment dependant prognostic factors V
 - clinical RECIST response (CR/PR vs NC/PD)
 - pathological CR to induction therapy in mediastinal nodes (pCR)
 - pathological CR in the primary to induction therapy (pCR)
 - PET response to induction therapy
 - PET response to definitive chemoradiotherapy

Eberhardt W, et al, ELCC 2015

Mediastinal downstaging to induction

MEDIASTINAL DOWNSTAGING IN NSCLC

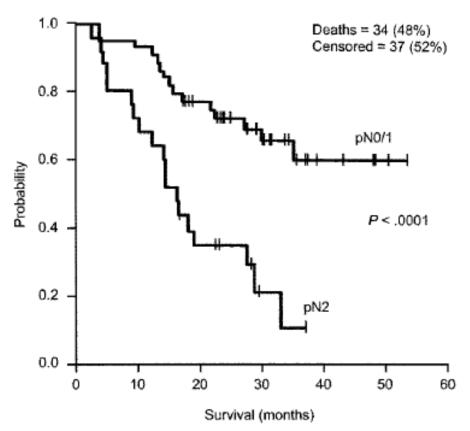


Fig 2. Overall survival dependent on pN2 clearance in the univariate analysis (patients with tumor resection, n = 71; P = log-rank test P value). Data were unavailable for four patients.

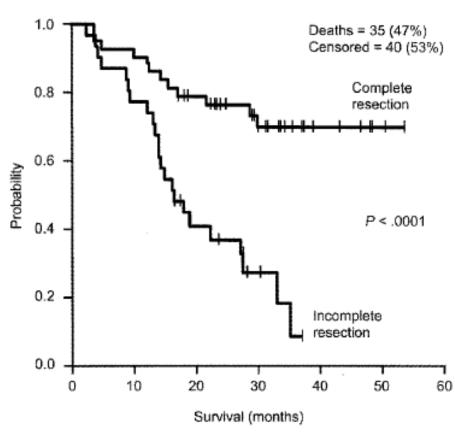
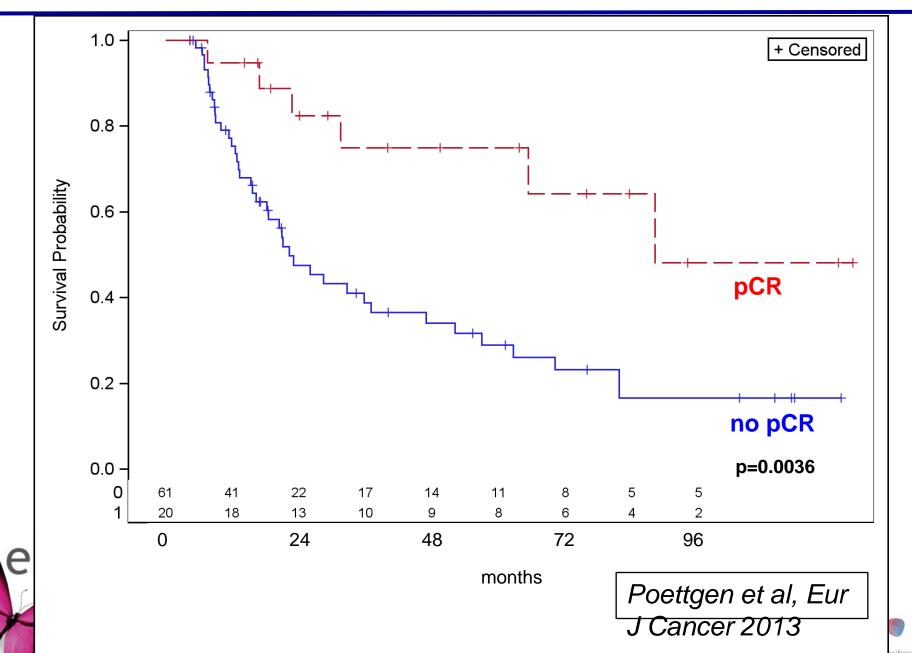
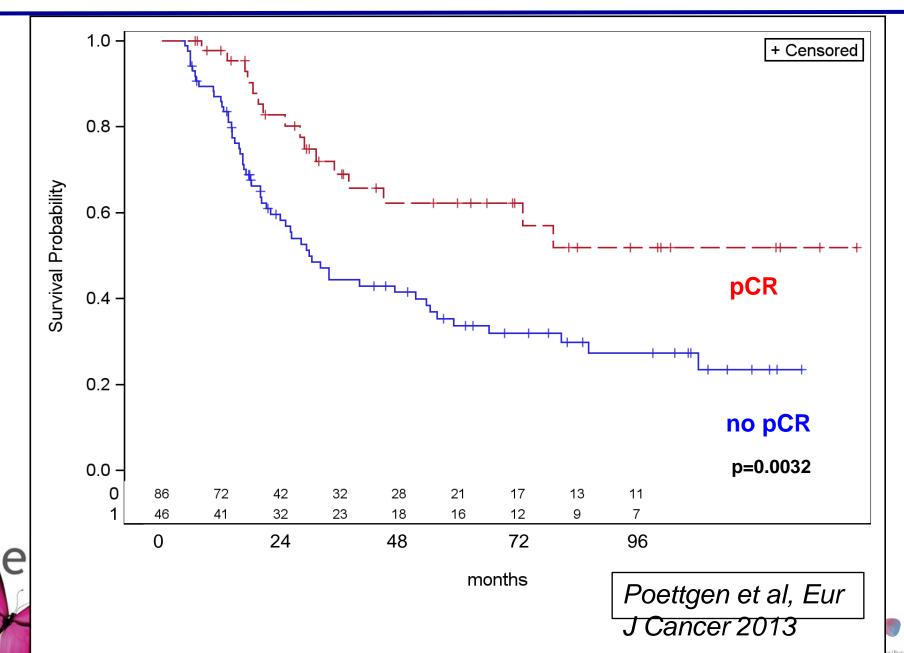


Fig 3. Overall survival dependent on complete resection in the univariate analysis (patients with tumor resection, n = 75, P = log-rank test P value).

15-18 April 2015, Geneva, Switzerland


Betticher, et al, JCO 2007

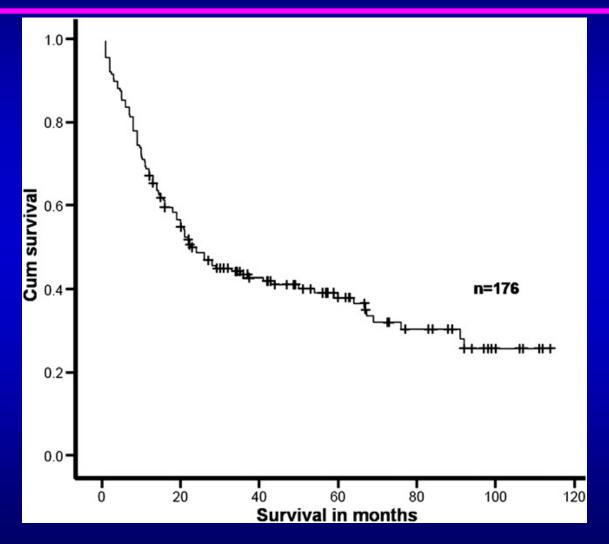


Overall Survival – pCR yes/no in stage IIIA

Overall Survival – pCR yes/no in stage IIIB

- treatment dependant prognostic factors VI
 - Pneumonectomy versus lobectomy/other techniques

Eberhardt W, et al, ELCC 2015



Essen-Zürich Pneumonectomy post induction

Weder W, Collaud S, Eberhardt W et al, J Thoracic Cardiovasc Surg 2010

Conclusions I

- stage III NSCLC is considerably heterogeneous
- several accepted pretreatment prognostic factors exist
- as treatment is best performed as a multimodality treatment (CTx/RTx, induction CTx followed by S, induction CTx/RTx followed by S) risk factors according to local treatments (surgery, radiotherapy) have to be considered

Eberhardt W, et al, ELCC 2015

Conclusions - II

 The best guided descision making is probably performed within dedicated (certified) thoracic oncology centres within a platform of a dedicated chest tumor boards including pulmonologists, medical oncologists, radiation oncologists and thoracic surgeons!

Eberhardt W, et al, ELCC 2015

Outlook

There are way too few large randomized trials that have been performed in stage III NSCLC!

Eberhardt W, et al, ELCC 2015

