Is Immunotherapy a 1st Line Treatment in NSCLC? Case Against

Dr Kenneth O'Byrne
Professor of Medical Oncology
Queensland Senior Clinical Research Fellow
Princess Alexandra Hospital and Queensland University of
Technology, Brisbane, Australia
& Trinity College, Dublin, Ireland

Disclosures

Honoraria for advisory board work or speaker bureau activites from Pfizer, Roche, AZD, BI, BMS, Lilly, MSD

Key Messages

- Chemotherapy remains the cornerstone of 1st line patient care in advanced NSCLC
- Targeted therapies required rigorous evaluation before replacing established first line regimens
 - EGFR TKIs and ALK inhibitors of value in ~20% patients with non-squamous NSCLC (higher in East Asia)
- The results of Immune Checkpoint therapies show limited, albeit encouraging, activity relative to the enthusiasm surrounding their efficacy
 - Phase III data needed to establish their role in 1st line therapy of NSCLC

Evolution of Approaches to Drug Improvementsin NSCLC

Today

RATIONAL USE OF MULTIPLE MODALITIES

Leverage strengths of each approach

Overcome weaknesses

Image adapted with permission from Hanahan D, Weinberg RA. Cell. 2011;144(5):646-674.

1. Hanahan D, Weinberg RA. Cell. 2011;144(5):646-674.

Immune Therapy Optimism VS Scientific Method, Reality

"I hooked a real big one but it kept swimming around the boat."

Fueling the Optimism

- Academic enthusiasm
- Modern science
 - Increased understanding of immune biology in malignant disease
 - Technology to rapidly interrogate a target: we're learning how to do things better
 - Media links: we have all become immuno-oncologists overnight
- Huge investment by pharma and biotech companies
 - Multiple agents for same target/pathway
 - Multiple targets

Immune privilege

DNA instability

lonising irradiation Chemotherapeutic agents Products of normal cellular metabolism DNA double-strand break **Metastisis** Resistance Invasion Repair defect/Age **Environmental adaptation Genomic instability Tumor genetic heterogeneity Deregulation of DNA repair** pathways

Genome stability and cancer

BRCA1, BRCA2, Homologous recombination: Breast and ovarian cancers

ATM, Homologous recombination: Breast, leukemia and lymphoma

NBS1, Homologous recombination: Lymphoid malignancies

MREII, Homologous recombination: Breast cancer

BLM, Homologous recombination: Leukemia, lymphomas, colon, breast, skin, tongue, lung, stomache...

WRN, Homologous and non homologous recombination: sarcomas, skin, thyroid and pancreatic cancers

RECQ4, Homologous recombination: Rothmund-Thomas syndrome, Rapadilino syndrome and Baller Gerold syndrome

FANC1, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCN, Homologous recombination and translesion synthesis: leukemia, liver and many solid cancers.

XPC, XPE, Nucleotide excision repair: skin cancer and melanoma.

XPA, XPB, XPD, XPF, XPG, Nucleotide excision repair: skin cancer, melanoma, central nervous system cancers.

XPV, translesion synthesis: Skin cancer and melanoma

hMSH2, hMSH6, hMLH1, hPMS2, Miss match repair: colorectal, endometrial and ovarian cancers.

MUTYH, base excision repair, and miss match repair: colon cancer.

Efficacy of Chemotherapy 1st Line:

What we know

1st-line platinum-based CT: Efficacy plateau

Cisplatin/Pemetrexed vs Cisplatin/ Gemcitabine in Advanced NSCLC: Results

Nonsquamous

Squamous

Maintenance Therapy: Paramount Overall Survival Data

Efficacy of Immune Checkpoint chemotherapy 1st Line:

What we know

Cancer immunotherapy in the future

Better patient selection, combinations, broader use?

Survival in patients with previously treated squamous cancer

More than twice as many people alive at ~2 years compared to chemotherapy!!

Nivolumab monotherapy as 1st-line treatment: study design

Chemotherapy-naïve
patients with stage IIIB or IV NSCLC
Non-squamous or squamous
histology

Nivolumab 3 mg/kg IV Q2W until disease progression or unacceptable toxicity^a

Primary objective: safety and tolerability

Secondary objectives: ORR and PFS rate at 24 weeks

Key eligibility criteria

- ≥18 years of age
- Stage IIIb/IV NSCLC
- ECOG PS ≤1
- Chemotherapy naïve; prior use of EGFR TKI is acceptable
- No symptomatic brain metastasis, autoimmune disease, grade ≥2 neuropathy, significant cardiac disease, interstitial lung disease
- Collection of tumour tissue (archival or recent)

Start date: December 2011

Estimated study completion date: September 2017
Estimated primary completion date: September 2016

Status: Recruiting

Nivolumab as 1st-line treatment: PFS and OS

PFS rate at 24 weeks was 60% and 1-year OS rate was 75%

Pembrolizumab OS Data

Kaplan-Meier Estimates of Survival

PFS (RECIST v1.1, Central Review)

- Median PFS: 27 weeks (95% CI, 14-45)
- 24-week PFS: 51%
- Previously treated
 - Median PFS: 10 weeks (9.1-15.3)
 - 24-week PFS: 26%

OS

Treatment naive

146

217

192

Median OS: NR (95% CI, NE-NE)

33

6-month OS: 86%

77

- Previously treated
 - Median OS: 8.2 months (7.3-NR)
 - 6-month OS: 59%

Garon EB et al, ESMO, 2014

Immune Checkpoint Therapy and Chemotherapy

Nivolumab plus platinum-based chemotherapy: Study Design

Primary endpoints

Safety and tolerability

Secondary endpoints

- ORR at 24 weeks
- PFS rate at 24 weeks

Key eligibility criteria

- ≥18 years of age
- Stage IIIb/IV NSCLC
- ECOG PS ≤1
- Chemotherapy naive; prior use of EGFR TKI is acceptable
- No symptomatic brain metastasis, autoimmune disease, grade ≥2 neuropathy, significant cardiac disease, interstitial lung disease
- Collection of tumour tissue (archival or recent)

Start date: December 2011

Estimated study completion date: September 2017
Estimated primary completion date: September 2016

Status: Recruiting

Nivolumab plus platinum-based chemotherapy: Percentage change in tumour burden from baseline

- The majority of patients across arms experienced a decrease in tumour burden (47/56, 84%)
- By week 18, one patient in the nivolumab 10 mg/kg + Pem/Cis arm and one patient in the nivolumab 10 mg/kg + Pac/Carb arm had a tumour burden reduction of >80%

Nivolumab plus platinum-based chemotherapy: Characteristics of response by treatment arm

- Across arms, responses were ongoing in 11 of 24 responders at the time of analysis
- 5 of the 11 patients with ongoing response were still alive and had not started subsequent therapy at the time of this analysis

Nivolumab plus platinum-based chemotherapy: PFS and OS

Ipilumumab Studies

Study design: NSCLC and ED-SCLC

Activity of phased-ipilimumab by baseline histology

Phase III Studies in Squamous and Small Cell Lung Cancer will report this summer

Caveats

Oncology history is paved with failed Phase III trials

Negative NSCLC Trials

- Erlotinib X2
- GefitinibX2
- MMPI x2 AG3340, BMS 275291
- MMPI (Prinomostat AG3340)
- FTI X3 (SCH66336, R115777,BMS)
- PKC Antisense (ISIS 3521) X2
- Bexarotene x2
- Bevazizumab
- Cetuximab
- Sorafanib
- PF Toll9 X2
- Trail agonists
- IGF-1R inhibitors
- ASA404
- Thalidomide
- Multiple vaccines
 Avg of 1,000 patients each

Negative SCLC Trials

- Pemetrexed
- Picoplatin
- Thalidomide
- GDC-0449
- IMC-A12

Courtesy David Carbone: Modified from Paul Bunn and Solange Peters

Randomised Phase III trial of Necitumumab in Squamous Cell NSCLC

Key results

Follow-up time (median): Gemcitabine/cisplatin+necitumumab: 25.2 months; gemcitabine/cisplatin: 24.8 months

Targeting VEGF can improve survival: Phase III trial of Bevacizumab in NSCLC (E4599)

E4599: 1st line paclitaxel/carboplatin +/- bevacizumab in nonsquamous

E4599: adenocarcinoma subset

Phase II trial OAM4558g: OS benefit may be related to MET IHC score

 'MET-positive' was defined as the majority (≥50%) of tumour cells with moderate or strong staining intensity

Baseline risk factor	Placebo + erlotinib		Onartuzumab + erlotinib				
	n	Median (months)	n	Median (months)	HR	Onartuzumab + erlotinib better	Placebo + erlotinib better
All patients	68	7.4	69	8.9	0.80	_	+
MET IHC status						Ĭ	
0	12		7	5.5	2.31	-	
1+	19	15.3	24	8.6	2.30		
2+	25	6.5	26		0.40	←	
3+	6	2.9	9	11.1	0.04	←	
							i I I I
						0.5	1 2
							HR

OAM4971g: Overall Survival Results

Summary Treatment Data

- Chemotherapy in unselected NSCLC patients 2 to 3 year survival rates of 10-20%, in adenocarcinomas and squamous cell lung cancer
- Maintenance strategies in non-squamous NSCLC patients have robust median survival rates of 15-17 months
- Immunotherapies, even in highly selected phase I and II studies, have modest response rates of ~20-40%
 - Survival currently based on small datasets!

Targeted Therapy

Real vs Notional

Right Target

Right Drug (or Combinations)

Right Patient

Selective design and delivery; Combinations for complex diseases

Phenotyping and genotyping

Mutations identified in EGFR gene

Afatinib OS in Del19 subgroup

Mutation categories

Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer

Manabu Soda^{1,2}, Young Lim Choi¹, Munehiro Enomoto^{1,2}, Shuji Takada¹, Yoshihiro Yamashita¹, Shunpei Ishikawa⁵, Shin-ichiro Fujiwara¹, Hideki Watanabe¹, Kentaro Kurashina¹, Hisashi Hatanaka¹, Masashi Bando², Shoji Ohno², Yuichi Ishikawa⁶, Hiroyuki Aburatani^{5,7}, Toshiro Niki³, Yasunori Sohara⁴, Yukihiko Sugiyama² & Hiroyuki Mano^{1,7}

EML4-ALK frequency:

~4% (64/1709)

Primarily lung adenocarcinoma

Crizotinib versus pemetrexed-platinum in advanced *ALK*-positive non-squamous NSCLC: results of a phase III study (PROFILE 1014)

- Key results
 - Addition of crizotinib significantly improved PFS but not OS compared with CT alone

PFS

Response to **Ceritinib** in ALK-Rearranged Non-Small-**Cell Lung Cancer** (NSCLC)

Advanced ROS1-positive NSCLC: Best Tumor Responses in Evaluable Patients to Crizotinib

⁺Treatment ongoing; duration of response/SD is from first documentation of tumor response/first dose to the time of PD or death. For ongoing patients, duration of response/SD is from first documentation of tumor response/first dose to last available on-treatment scan. Duration is in weeks.

Data as of April 24, 2013.

^aExcludes patients with early death (n=2)

^{*}This patient ALK+

What Predicts Benefit for PDL1 derived therapies?

OS by Histology

1- and 2-year OS rates were similar between histologies

Histology not Predictive!

No association between best change in target lesion tumour burden and *EGFR* or *KRAS* mutation status

Mutation Status Not Predictive!

Response by smoking exposure and according to RECIST in NSCLC

Response rates were higher in patients with a longer history of smoking exposure

PD = progressive disease; PR = partial response; RECIST = response evaluation criteria in solid tumours; SD = stable disease.

Hellmann MD, et al. Poster 1229PD presented at ESMO 2014 (Abstract 6111).

PFS and OS by smoking exposure

OS by smoking exposure

- In >5 than <5 pack-yrs smokers
 - PFS was significantly longer (2.2 vs 1.7 months, respectively)
 - OS was similar (10.1 vs 13.7 months, respectively)

Smoking status predictive for response, not survival

CI = confidence interval; HR = hazard ratio; mOS = median OS; mPFS = median PFS; OS = overall survival; PFS = progression-free survival.

Hellmann MD, et al. Poster 1229PD presented at ESMO 2014 (Abstract 6111).

PDL1 Expression

Pembrolizumab in NSCLC: PD-L1 NSCLC Sample Immunohistochemical Staining using the 22C3 antibody

Staining intensity: 0+ PD-L1 = 0% positive

Staining intensity: 1+ PD-L1 = 2% positive

Staining intensity: 2+ PD-L1 = 100% positive

Staining intensity: 3+ PD-L1 = 100% positive

PD-L1-Negative

PD-L1-Positive

Response Rate by Level of PD-L1 Expression (RECIST 1.1, Central Review)

RR = Response rate (confirmed and unconfirmed complete and partial response) PS=Proportion score. Strong PD-L1 positive staining was considered ≥50% of tumor cells, and weak was defined as staining between 1-49% of positively staining tumor cells. Negative had no tumor staining for PD-L1.

Kaplan-Meier Estimates of Survival

- PFS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.52; 95% CI, 0.33-0.80)
- OS was longer in patients with PD-L1 strong-positive versus PD-L1 weak-positive/ negative tumors (HR, 0.59; 95% CI, 0.35-0.99)

Characterisation of 28-8 anti-PD-L1 antibody

Affinity of 28-8 for PD-L1 protein by surface plasmon resonance analysis

	K _a (1/Ms)	K _d (1/s)	K _D (pM)
5H-1	1.54 x 10 ⁵	3.77 x 10⁻⁵	294
28-8	3.6 x 10 ⁵	4.2 x 10⁻⁵	100

Western blot analysis of 28-8 for PD-L1 protein binding

Lanes

- Molecular weight standard
- 0.1 µg rHuB7-H1 #156-B7 (PD-L1-fc fusion)
- 3. 0.1 µg rHuPD-L1-biotin (extracellular domain)
- 4. Blank
- 5. CHO-PD-L1
- 6. CHO control
- 7. ES2

28-1, 2 µg/mL, melanoma

Positive staining of macrophages and scant mononuclear cells (60x)

28-1, 2 µg/mL, NSCLC

Moderate and weak plasma membrane staining of frequent tumour cells (60x)

Best change in target lesion tumour burden by PD-L1 expression

- Nivolumab activity was observed in patients with PD-L1+ tumours as well as in some patients with PD-L1⁻ tumours
- More patients with PD-L1⁺ than PD-L1⁻ tumours had a decrease in tumour burden

OS and PFS by PD-L1 expression

PD-L1 tumour status	mOS months (95% CI)	mPFS months (95% CI)
Positive	7.8 (5.6, 21.7)	3.6 (1.8, 7.5)
Negative	10.5 (5.2, 21.2)	1.8 (1.7, 2.3)

PD-L1 expression appeared to have no clear association with PFS or OS

PDL1 expression Predictive?

No obvious logic in pre-selecting patients based on current data

Current biomarker selection is, at best, an enrichment strategy

Protein Based Biomarkers in NSCLC

- Always difficult
- EGFR IHC remains of limited value with EGFR TKIs or monoclonal antibodies
- VEGF, VEGF receptor expression and other markers of angiogenesis not of value in selecting patients for anti-angiogenic therapy
 - Much work to be done!

Personal Experience

- Seven patients with PD1/PDL1 targeted agents 1st line setting
- All pre-selected based on IHC scores
 - 1 PR
 - 1 SD
 - 5 PDs progress quickly
- Agents well tolerated but results appear modest

THE

TIMES

No. 67524

THURSDAY AUGUST 8 2002

W

W

Summary

- Today chemotherapy and mutation defined targeted therapies remain the 1st line treatments of choice in NSCLC
- Immune therapy holds promise with proven efficacy in second line treatment of squamous cell NSCLC vs docetaxel chemotherapy
 - Data for 1st line therapy immature
 - The good news is we don't have too long to wait to find out the answer
- Biomarker of questionable value
 - Activity seen in positive and negative cases with all assays in development

Prof Soria's and Our Dilemma.....

so much to choose from but which one and for which patient?!

