## Are there new targets in advanced NSCLC?

# New targets relevant after the era of EGFR and ALK

Enriqueta Felip
Vall d'Hebron University Hospital
Barcelona, Spain













## **Disclosures**

Consultancy fees from: AstraZeneca, BMS, Boehringer Ingelheim, GSK, Lilly, MSD, Novartis, Pfizer, Roche















# **Evolution of cancer treatment**



Few therapeutic options:

- Surgery
- Radiotherapy
- Chemotherapy

Increased therapeutic options allows specific treatments for different tumor types

15-18 April 2015, Geneva, Switzerland

Organisers





Targeted agents that work in specific molecular alterations:

- Broad knowledge of molecular tumor biology
- Development of molecular analysis







## **Evolution of cancer treatment**

Nowadays

Molecular Oncology Personalized Medicine

**Clinical Oncology** 

Pathologic Oncology

Reclassification of disease

Technology development and genomics

Change in paradigm of biomarker-drug development

Cancer genome atlas

Pangenomics

- ne atlas
  - PAKT INSULATION INSULA

- Multiplexing
- Next Generation Sequencing



Clinical trials in small p populations

New clinical trials in Personalized medicine











# **Targetable oncogenes in lung ADC**





Minuti Exp Opin Biol Ther 13













# 97% of mutations mutually exclusive

| # Single<br>Mutations | ALK | AKT | BRAF | EGFR | HER2 | KRAS | MEK1 | MET | NRAS | PIK3CA |
|-----------------------|-----|-----|------|------|------|------|------|-----|------|--------|
| ALK (38)              | Х   |     | 1    | 2    |      | 1    |      | 1   |      |        |
| AKT1 (0)              |     | X   |      |      |      |      |      |     |      |        |
| BRAF (9)              |     |     | Х    |      |      |      |      |     |      | 1      |
| EGFR (89)             |     |     |      | X    |      |      |      | 1   |      | 3      |
| HER2 (3)              |     |     |      |      | Х    |      |      |     |      |        |
| KRAS (114)            |     |     |      |      |      | X    |      | 1   |      | 1      |
| MEK1 (2)              |     |     |      |      |      |      | X    | 1   |      | 1      |
| MET AMP (3)           | )   |     |      |      |      |      |      | Х   |      |        |
| NRAS (2)              |     |     |      |      |      |      |      |     | Х    |        |
| PIK3CA (6)            |     |     |      |      |      |      |      |     |      | X      |

Number of patients with variants in indicated combination of genes, 3% (14/516)

15-18 April 2015, Geneva, Switzerland

**Lung Cancer Mutation Consortium** 













## Mechanisms of acquired resistance to EGFRTKIs





15-18 April 2015, Geneva, Switzerland

Organisers





Yu Clin Cancer Res 13





# **Potentially targetable mutations in SCC**





Perez-Moreno P et al. Clin Cancer Res. 2012













# New targets relevant after the era of EGFR and ALK Outline

- ROS1
- HER2
- BRAF
- RET
- NTRK1
- MET
- FGFR1
- DDR2

















#### **ROS1 in NSCLC**

- 50 advanced NSCLC p with ROS1 rearrangement received crizotinib
- RR 72% with 3 CR and 33 PR
- Median duration of response 17.6 mo
- Median PFS 19.2 mo
- Safety profile of crizotinib similar to that seen in p with ALK-rearranged NSCLC
- Crizotinib showed marked antitumor activity in p with advanced ROS1-rearranged NSCLC











#### **ROS1 in NSCLC**

- Retrospective study of stage IV lung ADC p with ROS1 rearrangement (FISH) who had received crizotinib (individual off-label use)
- 32 p
  - Median age 50.5 yrs
  - 64.5% women
  - 67.7% never-smokers
  - RR 80%
  - Median PFS 9.1 months
  - No unexpected AEs observed
- Crizotinib highly active in lung cancer p with ROS1 rearrangement, suggesting that p with lung ADC should be tested for ROS1



**Mazières JCO 15** 









# **ROS1** in lung cancer, next steps

- IHC, high sensitivity and specificity for detecting ROS1 rearrangements (Boyle Clin Lung Cancer 15)
- Cabozantinib overcomes crizotinib resistance in ROS1+ (Katayama CCR 15)
- PF-06463922, a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations (Zou PNAS 15)
- Clinical trials
  - Cabozantinib in p with RET fusion+ advanced NSCLC and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity
  - LDK378 in p with NSCLC harboring ROS1 rearrangement
  - PF-06463922 in p with advanced NSCLC with ALK+ or ROS1+















#### **HER2 in NSCLC**

- Somatic mutations of HER2 kinase domain in lung ADC (Shigematsu Cancer Res 05)
- HER2 mutation and response to trastuzumab (Cappuzzo NEJM 06)
- 16 p receiving HER2-tageted therapies; 22 evaluable individual anti-HER2 treatments, 50% RR (majority received trastuzumab+CT) (Mazières JCO 13)
- Dacomitinib (Kris WLCC Sydney 13)
  - 26 p with HER2 mutation
    - 3 PR (13%), duration of response 4+, 13, 14 mo
    - Median PFS 3 mo, median OS 10 mo
    - 4 p with HER2 amplification, no responses













### **HER2 in NSCLC**

#### Afatinib

- Induced regressions in transgenic mouse models, effect increased with rapamycin (mTOR inhibitor) (Perera PNAS 09)
- PR in 3 / 3 evaluable p with HER2-mut (De Grève Lung Cancer 12)
- Neratinib
  - Phase I neratinib/temsirolimus, 7 NSCLC p with HER2 mutations (2 previously treated with trastuzumab): 2 PR / no PD (Gandhi JCO 14)
- Trastuzumab emtansine
  - Rapid response to trastuzumab emtansine in a p with HER2-driven lung cancer (Weiler JTO 15)













# Neratinib with/without temsirolimus in p with **NSCLC** carrying HER2 somatic mutations

- 13 p received neratinib, 14 p neratinib/temsirolimus
- Neratinib arm: 54% SD / 46% PD; PFS 2.9 mo
- Neratinib/temsirolimus: 21% PR / 79% SD; PFS 4.0 mo
- G3 toxicity neratinib/temsirolimus: vomiting 21%; diarrhea 14%













# **HER2** in lung cancer, next steps

- RR in HER2 mutated p treated prospectively with HER2 inhibitors seems lower to that observed in other oncogenic-driven subsets
- Other predictive markers?
  - Insertions vs other
  - o p95HER2
- Ongoing treatment strategies
  - Neratinib/temsirolimus combination, further study
  - Afatinib phase II ETOP trial
  - TDM1 phase II trial













#### **BRAF in NSCLC**

- BRAF mutations occurred in 2.2% of advanced-stage lung ADC, most commonly V600E (Villaruz Cancer 15)
- Vemurafenib, case reports
  - P with BRAF V600E lung ADC responding to vemurafenib (Gautschi JTO 12)
  - Dramatic response induced by vemurafenib in a BRAF V600E mutated lung ADC (Peters JCO 13)
  - Lung ADC with BRAF G469L mutation refractory to vemurafenib (Gautschi Lung Cancer 13)
- Dabrafenib
  - Preliminary efficacy data from 20 BRAF V600E p promising, 60%
     DCR (Planchard ASCO 13)













# Dabrafenib in p with BRAF V600Emutant advanced NSCLC: a phase II trial

- 78 previously treated p; median age 66 yrs, 50% female, 15% ECOG 2, 37% never-smoker
- O 32% PR / 24% SD ≥ 12 weeks / 29% PD / 14% NE
- Disease control rate: 51% independent review vs 56% investigator
- Median duration of response 11.8 mo
- PFS 5.5 mo
- Tolerable treatment-related toxicity, special attention to cutaneous squamous cell-carcinoma needed













## **BRAF** in **NSCLC**, next steps

- Identification of acquired resistance mechanisms to BRAF inhibitors
  - After PR with dabrafenib, biopsy at PD showed KRAS G12D mutation (Rudin JTO 13)
  - BRAF V600E NSCLC cells acquire resistance to BRAF inhibition (Lin PNAS 14)
    - Simultaneous loss of full-length BRAF V600E, and aberrant BRAF pathway expression
    - Engagement of EGFR signaling pathway

- Combination of targeted therapies
  - Cohort B with dabrafenib/trametinib actively recruiting













# Lung ADC with RET fusion: early experience with diagnosis and targeted therapy

- 529 tumor samples analyzed in 12 mo
- 12 (2%) tumors RET-positive by FISH
- No coincident mutations in EGFR, HER2, KRAS, BRAF, ALK, or ROS1
- 4 p with *RET* fusion received one or more RET inhibitors; PR seen with cabozantinib and vandetanib



Gautschi ELCC 14











# Patients with targeted therapy



15-18 April 2015, Geneva, Switzerland

Gautschi ELCC 14













## **RET in NSCLC, next steps**

- Responses to cabozantinib in p with RET fusion-positive lung ADC (Drilon Cancer Discov 13)
- Clinical trials
  - Cabozantinib in p with RET fusion+ advanced NSCLC and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity
  - Vandetanib in advanced NSCLC with RET rearrangement
  - Ponatinib in advanced NSCLC with RET translocation
  - Safety and activity of lenvatinib (E7080) in subjects with KIF5B-RET+
     ADC of the lung













#### NTRK1 in NSCLC

- NTRK1 rearrangements, which encode TRKA protein, identified in tumor samples from 3/91 (3%) p (never-smokers) with lung cancer without known oncogenic alterations (Vaishnavi Nat Med 13)
- In preclinical models, kinase inhibitors with activity against TKRA—
  including ARRY-470, lestaurtinib (CEP-701), and crizotinib induced cellcycle arrest and inhibited proliferation
- Clinical trials:
  - Phase I study of RXDX-101, an oral Pan-Trk, ROS1, and ALK inhibitor (De Braud ESMO 14)
  - Cabozantinib in p with RET fusion+ advanced NSCLC and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity













### MET: study A8081001 with crizotinib







# **MET** amplification cohorts determined by FISH



Low *MET* level

MET/CEP7 ratio ≥1.8–≤2.2

Mean MET cell: 9.0

Mean CEP 7 cell: 4.7

Ratio: 1.9

Intermediate MET level
MET/CEP7 ratio >2.2-<5.0
Mean MET cell: 7.0
Mean CEP 7 cell: 2.1

Ratio: 3.3

High *MET* level <u>MET/CEP7</u> ratio ≥5 Mean MET cell: 15.7

Mean MET cell: 15.7 Mean CEP 7 cell: 2.8

**Ratio: 5.6** 





itzei









# **Objective response rate**

|                                                                                              | Low <i>MET</i> ,<br>n=2 | Intermediate<br><i>MET</i> , n=6 | High <i>MET</i> ,<br>n=6             |
|----------------------------------------------------------------------------------------------|-------------------------|----------------------------------|--------------------------------------|
| ORR, % (95% CI) <sup>b</sup>                                                                 | 0 (0–84)                | 17 (0–64)                        | 67 (22–96)                           |
| Best response, n (%) Complete response Partial response Stable disease Objective progression | 0<br>0<br>0<br>2 (100)  | 0<br>1 (17)<br>4 (67)<br>1 (17)  | 1 (17)<br>3 (50)<br>1 (17)<br>1 (17) |
| Median duration of response, weeks (range) <sup>c</sup>                                      | _                       | 16                               | 73.6<br>(24.1–128.0)                 |
| Duration of stable disease, n (%) <sup>d</sup><br>0–<3 months<br>3–<6 months                 | _<br>_                  | 3 (75)<br>1 (25)                 | 0<br>1 (100)                         |

Lung Cancer Mutation Consortium (Varella-Garcia ASCO 12) MET gene amplification defined by ratio mean MET/mean CEP7>2 in 4% of ADC













## c-MET Inhibition in SCC: crizotinib

#### c-Met amplified SCC

Before After







Schwab Lung Cancer 2014









## MET amplification, a mechanism of AR to EGFTKIs

- Phase Ib/II of cabozantinib +/- erlotinib, encouraging activity in erlotinib-pretreated population, including PR in one p with MET amplification (Wakelee ASCO 12)
- Phase Ib/II trial of INC280/gefitinib in p with EGFR mutation and MET-positive (IHC) (wu ASCO 14)
  - PR seen in 8/46 (17%) evaluable p
  - All responding p had high MET status by IHC or FISH
- Phase I of EGF816 in combination with INC280 in NSCLC p with EGFR mutation and AR













# FGFR inhibition in SCC, BGJ398

- Phase I dose-escalation study of p with any FGFR genetically altered tumor, progressed at least 1line, including platinum (SCC cohort: N=21)
  - FGFR 1-amplified tumors by FISH/CISH
- Results: 17 evaluable p
  - 2 PR
  - 2 additional PRs after the data cutoff date
  - 3 additional p had SD with tumor regression (up to 11% reduction)

#### Safety:

Manageable and reversible hyperphosphatemia, stomatitis, decreased appetite, and fatigue

#### Conclusion:

 These data encourage further development of BGJ398 in FGFR1amplified SCC and efforts to optimize predictive biomarkers for FGFR inhibitor sensitivity

15-18 April 2015, Geneva, Switzerland

Nogova J Clin Oncol 2014













### FGFR Inhibition in SCC, AZD4547

Phase I expansion of AZD4547 in previously-treated p with FGFR1 amplified
 SCC

#### Results:

- 15 p: 1 PR, 4 SD, 9 PD (7 progressions and 2 deaths)
  - The PR observed in a p with high FGFR1 amplification

#### Safety:

- Most common related AEs were GI and dermatologic
- Grade ≥ 3 related AEs in 3 p (20%) (central serous retinopathy, hyponatremia, dehydration)

#### Conclusion:

 AZD4547, well-tolerated in p with FGFR1 amplified SCC but prespecified efficacy endpoint in terms of ORR for continuation not met



Paik J Clin Oncol 2014













#### **FGFR** inhibitors in clinical trials in **NSCLC**

| DRUG               | TARGET                                              |
|--------------------|-----------------------------------------------------|
| Dovitinib          | VEGFR1-2-3,<br>PDGFRβ, FGFR1-2-3,<br>FLT3, KIT, RET |
| Ponatinib          | VEGFR2, FLT3 PDGFRα,<br>FGFR1-2-3-4,<br>BCR-ABL     |
| Lucitanib          | VEGFR1-2-3, PDGFR $\alpha$ - $\beta$ , FGFR1        |
| AZD4547            | FGFR1-2-3                                           |
| BGJ398             | FGFR1-2-3                                           |
| LY2874455          | FGFR1-2-3-4                                         |
| JNJ-42756493       | FGFR1-2-3-4                                         |
| Debio1347          | FGFR1-2-3                                           |
| TAS120             | FGFR1-2-3-4                                         |
| GSK3052230/FP-1039 | FGF trap                                            |













#### DDR2 in SCC

- In 290 SCC tissue samples, frequency of *DDR2* mutations, 3.8% (Hammerman Cancer Disc 2011)
  - DDR2 mutations drive molecular alterations whose activation has been inhibited by dasatinib
  - SCC p harboring a DDR2 kinase domain mutation who responded to dasatinib and erlotinib treatment
- Trial of dasatinib in subjects with advanced cancers harboring DDR2 mutation or inactivating B-RAF mutation
  - Study terminated (lack of efficacy and slow accrual)















# New targets relevant after the era of EGFR and ALK

- What is the optimal treatment for p with ROS1, RET, BRAF or HER2 genomic alterations after standard treatment?
  - 2<sup>nd</sup> ESMO Consensus Conference on Lung Cancer (B Besse and Panel members, Ann Oncol 14):
    - **Recommendation:** Specific targeted treatments should be discussed with the p and may be considered in individual p based on expected risk-benefit, biological plausibility, preclinical data, and limited clinical efficacy data for authorised therapies in different indications















# New targets relevant after the era of EGFR and ALK



### NCCN Guidelines Version 5.2015 Non-Small Cell Lung Cancer

#### **EMERGING TARGETED AGENTS FOR PATIENTS WITH GENETIC ALTERATIONS**

| Genetic Alteration (ie, Driver event) | Available Targeted Agents with Activity<br>Against Driver Event in Lung Cancer |  |  |
|---------------------------------------|--------------------------------------------------------------------------------|--|--|
| BRAF V600E mutation*                  | vemurafenib <sup>1</sup><br>dabrafenib <sup>2</sup>                            |  |  |
| MET amplification                     | crizotinib <sup>3,4</sup>                                                      |  |  |
| ROS1 rearrangements                   | crizotinib <sup>5</sup>                                                        |  |  |
| HER2 mutations                        | trastuzumab <sup>6</sup> (category 2B)<br>afatinib <sup>7</sup> (category 2B)  |  |  |
| RET rearrangements                    | cabozantinib <sup>8</sup> (category 2B)                                        |  |  |

<sup>\*</sup>Non-V600E mutations have variable kinase activity and response to these agents.













# New targets relevant after the era of EGFR and ALK

- NSCLC is divided in subsets by the presence of targetable molecular alterations (EGFR, ALK, KRAS, ROS1, RET, HER2, BRAF, NTRK1, FGFR, among others)
- At present, EGFR, ALK and ROS1 should be tested in non-SCC
- Challenges
  - Genotyping
  - Some molecularly defined subsets are infrequent; a clear effort required to identify these p
  - Few trials in these uncommon molecular alterations
  - International collaboration













# Thanks!!!

efelip@vhebron.net











