

Focus on treatment complications and optimal management: Radiation Oncology

Dirk De Ruysscher, MD, PhD
Radiation Oncologist
Professor of Radiation Oncology
Leuven Cancer Institute
Department of Radiation Oncology
Leuven, Belgium

Disclosure

None to declare

Side-effects and incidence

- Esophageal damage
 - Acute: grade 3 or more:
 - Concurrent chemo-radiation: 20 %- 30 %
 - Sequential chemo-radiation: < 5 %
 - Late: strictures grade 2 or more: < 5 %</p>
- Lung damage: 5 % 30 %
- Skin reactions: severe: < 10 %
- Rib fractures: 10 % 30 %

Dose-limiting side-effects

- Esophageal damage
 - Acute: grade 3 or more
 - From ± week 3 during therapy to 2-6 weeks postradiation
 - Late: grade 2 or more
 - 3 months to many years post-radiation
- Lung damage
 - Acute: grade 2 or more
 - 1-6 months post-treatment ("Radiopneumonitis")
 - Late: grade 2 or more
 - 6 months and more post-radiotherapy ("Fibrosis")

Parameters related to acute esophagitis

- Most important: concurrent administration of chemotherapy
- NTCP models
- DVH parameters (highly correlated with each other)
 - Mean dose
 - Max. Dose
 - $-V_{55}$
 - Circumference > 80 %
 - Overall treatment time ("BID" as a surrogate)
 - Length <u>not</u> consistent

De Ruysscher et al. J Clin Oncol 2010

Correlation between acute esophagitis and neutropenia.

n=328

Restrictions for acute esophagitis

- No consensus: Mean dose and V_{55} , V_{35} most often used
- EORTC: e.g. Mean Esophageal Dose < 34
 Gy

(De Ruysscher et al. J Clin Oncol 2010)

RTOG: Mean Esophageal Dose < 34 Gy.
 "This is not an absolute requirement, but is strongly recommended unless other, more critical constraints force the situation."

Treatment of radiation-induced acute esophagitis

- Empirical, no hard data
- Crucial: maintain intake of food and fluid!
- Symptomatic

Treatment of radiation-induced acute esophagitis

- RTOG suggestions
 - Ketoconazole 200 mg PO q day OR Fluconazole 100 mg PO q day until the completion of radiation
 - Mixture of: 2% viscous lidocaine: 60 ml
 - Mylanta: 30 ml
 - Sucralfate (1 gm/ml): 10 ml (take 15-30 ml PO q3-4 hrs prn.
 Contraindications: Dilantin, Cipro, Digoxin)
 - Ranitidine 150 mg PO BID (or other H2 blocker or a proton pump inhibitor such as omeprazole) until the completion of radiation
 - Grade 4 esophagitis: hold RT + chemotherapy until grade 2 or less

Late esophagitis

- Most consistent: maximal dose
- Constraint: Maximal dose < 75 Gy (< 5 % grade 2 strictures)
- Treatment:
 - Grade 1: diet
 - Grade 2-3: dilatation

Radiation-Induced Lung Toxicity (RILT)

• Problems:

- No consistent definition: RTOG? CTC? Steroidsrequired?
- Mostly only the peak reaction is reported: Reversible?
- At least 25 % of patients have "pneumonitis"
 due to COPD exacerbation

"Radiopneumonitis" is a diagnosis of exclusion!

Radiation Pneumonitis

Radiation Pneumonitis

Parameters related to RILT

- <u>NOT</u>: concurrent administration of cisplatin, vinorelbine, etoposide; careful with docetaxel
- NTCP models
- DVH parameters (highly correlated with each other)
 - Mean dose
 - $-V_{20}$
 - $-V_5$
 - Smoking: less RILT

De Ruysscher et al. J Clin Oncol 2010 Palma DA et al. Int J Radiat Oncol Biol Phys 2013

Restrictions for RILT

Maximal

MLD = 20 Gy

 $V_{20} = 35 \%$

Below MLD = 20 Gy and V_{20} = 35 % no clear dose-response relation

Kwa et al. Int J Radiat Oncol Biol Phys 1998; Dehing et al. Radiother Oncol 2009

Dyspnea evolution after radiotherapy: No baseline dyspnea

De Ruysscher et al. Radiother Oncol 2009

Dyspnea evolution after radiotherapy: Baseline dyspnea grade 1: 20 % no dyspnea after radiotherapy

Dyspnea evolution after individualised radiotherapy: 10 % less patients with dyspnea

van Baardwijk et al. J Clin Oncol 2010

SBRT: No change of FeV1 or DLCO over time

SBRT: No decline in FeV1 or DLCO in patients with poor pulmonary function

Treatment of acute RILT

- Empirical
- Symptomatic
- ! Other causes; e.g. Infections: chest physician
- Not severely ill patient:
 - Inhalation bronchodilators + steroids
 - Codein
 - When not effective: oral steroids: e.g. Prednison 30 mg/day, 10 days
- Severely ill patient:
 - Chest physician
 - High-dose corticosteroids

Late RILT

- Risk factors: same as acute RILT
- Treatment (?): Symptomatic

