Optimal radiotherapy for stage III NSCLC in 2014: What dose/fractionation for concurrent and sequential schedules?

Dirk De Ruysscher, MD, PhD
Radiation Oncologist
Professor of Radiation Oncology
Leuven Cancer Institute
Department of Radiation Oncology
Leuven, Belgium
Disclosure

None to declare
Dose and time influence local control

% Progression-free Survival of patients at 30 months (Martel et al. 1999)

TP = 3 days
Tk = 28 days
γ = 0.66 Gy/d

Total dose in 2 Gy fractions (= NTD)

Influence of overall treatment time of radiotherapy on survival in stage I-III NSCLC without concurrent chemo-radiotherapy

<table>
<thead>
<tr>
<th>Category</th>
<th>No. Deaths / No. Entered</th>
<th>Hazard Ratio</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp. RT</td>
<td>Conv. RT</td>
<td>O-E</td>
</tr>
<tr>
<td>Very accelerated RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMCI 88C091</td>
<td>48/48</td>
<td>52/53</td>
<td>-0.8</td>
</tr>
<tr>
<td>PMCI 88C091 CT</td>
<td>51/51</td>
<td>56/56</td>
<td>6.0</td>
</tr>
<tr>
<td>CHART</td>
<td>316/338</td>
<td>217/225</td>
<td>-29.4</td>
</tr>
<tr>
<td>ECOG 2597</td>
<td>51/60</td>
<td>55/59</td>
<td>-7.4</td>
</tr>
<tr>
<td>CHARTWEL</td>
<td>132/150</td>
<td>132/150</td>
<td>0.2</td>
</tr>
<tr>
<td>CHARTWEL CT</td>
<td>40/53</td>
<td>47/53</td>
<td>-6.4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>638/700</td>
<td>559/596</td>
<td>-37.8</td>
</tr>
<tr>
<td>Moderately accelerated RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glivice 2001</td>
<td>26/29</td>
<td>27/29</td>
<td>-1.4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>26/29</td>
<td>27/29</td>
<td>-1.4</td>
</tr>
<tr>
<td>Hyperfractionated RT - identical total dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCCTG 902451</td>
<td>34/39</td>
<td>35/35</td>
<td>-7.0</td>
</tr>
<tr>
<td>NCCTG 942452</td>
<td>111/125</td>
<td>108/121</td>
<td>-2.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>145/164</td>
<td>143/156</td>
<td>-9.6</td>
</tr>
<tr>
<td>Hyperfractionated RT - increased total dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTOG 8808</td>
<td>155/163</td>
<td>156/163</td>
<td>-6.4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>155/163</td>
<td>156/163</td>
<td>-6.4</td>
</tr>
<tr>
<td>Total</td>
<td>964/1056</td>
<td>885/944</td>
<td>-55.2</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 9.74$, p = 0.37, $I = 8\%$

Test for interaction: $\chi^2 = 0.17$, p = 0.98

Experimental RT better | Conventional RT better
Influence of induction chemotherapy

<table>
<thead>
<tr>
<th>Ctx</th>
<th>CF</th>
<th>CHARTWEL</th>
<th>HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>103/150</td>
<td>96/150</td>
<td>0.97</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.69; 1.37)</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>38/53</td>
<td>36/53</td>
<td>0.48</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.26; 0.89)</td>
<td></td>
</tr>
</tbody>
</table>

CF: Conventional fractionation (66 Gy/ 33 fr/ 6.6 weeks)
CHARTWEL: 60 Gy/ 40 fractions/ 2.5 weeks; 3 x 1.5 Gy/day

Baumann et al. Radiother Oncol 2011
Tumour volume and survival

Soliman et al. Radiother Oncol 2013
Tumour volume and survival (50 Gy/20 fractions)

- Black line: < 19 cc
- Red line: 19 to 48 cc
- Green line: 48 to 110 cc
- Blue line: 110 cc +

Statistical significance:
- P(global) = 0.041
- P(trend) = 0.017

Table of Number at Risk:

<table>
<thead>
<tr>
<th>Volume Range</th>
<th>Number at Risk</th>
<th>Years from Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 19 cc</td>
<td>123</td>
<td>95</td>
</tr>
<tr>
<td>19 to 48 cc</td>
<td>131</td>
<td>91</td>
</tr>
<tr>
<td>48 to 110 cc</td>
<td>128</td>
<td>92</td>
</tr>
<tr>
<td>110 cc +</td>
<td>127</td>
<td>72</td>
</tr>
</tbody>
</table>

Ball et al. Radiother Oncol 2013
Concurrent chemotherapy and radiotherapy

- Level I evidence: Concurrent chemo-radiotherapy is superior to sequential chemo-radiation
- Same radiotherapy schedule in both arms: Methodologically sound, biologically?
- Patient selection?
Why is concurrent chemo-RT better? Improved local tumour control

Local tumour control better still 30-40 % local progression

Same incidence of distant metastases

Aupérin et al. J Clin Oncol 2010
Phase III trials:
- 60-66 Gy in 2 Gy/day fractions, 5 times per week over 6-7 weeks or
- 66 Gy in 24 fractions over 5 weeks (2 trials)
- Concurrently with
 - cisplatin-etoposide
 - cisplatin-vinorelbine
 - cisplatin daily (2 trials)

Overall, all schedules seem to have similar efficacy
<table>
<thead>
<tr>
<th>RT Technique</th>
<th>Concurrent Treatment</th>
<th>Consolidation Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-CRT</td>
<td>Arm A: Concurrent chemotherapy* RT to 60 Gy, 5 x per wk for 6 wks</td>
<td>Arm A: Consolidation chemotherapy*</td>
</tr>
<tr>
<td>IMRT</td>
<td>Arm B: Concurrent chemotherapy* RT to 74 Gy, 5 x per wk for 7.5 wks</td>
<td>Arm B: Consolidation chemotherapy*</td>
</tr>
<tr>
<td>Zubrod</td>
<td>Arm C: Concurrent chemotherapy* and Cetuximab RT to 60 Gy, 5 x per wk for 6 wks</td>
<td>Arm C: Consolidation chemotherapy* and Cetuximab</td>
</tr>
<tr>
<td>PET Staging</td>
<td>Arm D: Concurrent chemotherapy* and Cetuximab RT to 74 Gy, 5 x per wk for 7.5 wks</td>
<td>Arm D: Consolidation chemotherapy* and Cetuximab</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Squamous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Carboplatin and paclitaxel
Overall Survival

- Median survival time:
 - Standard (60 Gy): 28.7 months
 - High dose (74 Gy): 19.5 months

- Survival rates at 18 months:
 - Standard: 66.9%
 - High dose: 53.9%

- Hazard ratio (HR): 1.56 (1.19, 2.06)
 - p-value: 0.0007

- Patients at Risk:
 - Standard: 213 → 207 → 190 → 177 → 161 → 141 → 108
 - High dose: 206 → 197 → 178 → 159 → 135 → 112 → 87
Local Failure

18-Month Local Progression Rate

HR = 1.37 (0.99, 1.89) \(p = 0.0319 \)

Patients at Risk

- Standard (60 Gy): 213, 206, 205, 197, 187, 165, 137, 113, 85
- High dose (74 Gy): 206, 197, 170, 134, 105, 80, 62

Local Progression Rate (%)

- Standard (60 Gy): 65, 81, fail, fail
- High dose (74 Gy): 81, 206, fail, fail

Months since Randomization

- 0, 3, 6, 9, 12, 15, 18

Fail

Total

- Standard (60 Gy): 213
- High dose (74 Gy): 206

0

20

40

60

80

100

0

3

6

9

12

15

18
Distant Failure

Distant Failure Rate (%)

Months since Randomization

Patients at Risk

<table>
<thead>
<tr>
<th>Months</th>
<th>Standard (60 Gy)</th>
<th>High dose (74 Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>213</td>
<td>206</td>
</tr>
<tr>
<td>3</td>
<td>205</td>
<td>193</td>
</tr>
<tr>
<td>6</td>
<td>175</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>145</td>
<td>126</td>
</tr>
<tr>
<td>12</td>
<td>115</td>
<td>93</td>
</tr>
<tr>
<td>15</td>
<td>97</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>213</td>
<td>206</td>
</tr>
</tbody>
</table>

Fail Total

<table>
<thead>
<tr>
<th>Standard</th>
<th>97</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td>High dose</td>
<td>104</td>
<td>206</td>
</tr>
</tbody>
</table>

HR=1.15 (0.87, 1.51)
p=0.1576

18-Month Failure Rate

- Standard (60 Gy): 47.8%
- High dose (74 Gy): 42.4%
Optimal dose/ fractionation

- **Non-concurrent**
 - High-dose accelerated, e.g. 66 Gy/ 24 QD fractions

- **Concurrent**
 - Standard is 60-66 Gy in 2 Gy QD fractions (RTOG0617)
 - Shortening overall treatment time with concurrent chemotherapy
 - Not studied in depth
 - Not beneficial in squamous cell cancer head and neck
Issues to be solved

• Same dose and fractionation for all histologies, molecular characteristics ...?
• Influence of the patient?
Individual image-based tissue characterization:
Possible prognostic and predictive use

Tumor
- Tumor cells:
 e.g., genetic instability, mutation status, resistance
- Microenvironment:
 e.g., hypoxia
- Malignant potential:
 e.g., undetermined pulmonary nodules
 At screening or staging

Normal tissues (e.g., lungs, heart)
- e.g., ventilation and perfusion heterogeneity

Selection of systemic treatment
Most appropriate drugs, dose, and sequence

Selection of local therapy
Determination of best radiation dose:
eScalation or deescalation
Selective avoidance of most susceptible parts of healthy organs

© 2013 American Association for Cancer Research

CCR Translations

De Ruysscher D. Clin Cancer Cancer Res 2013
Changes in Hounsfield Units (HU) per Gy for each individual patient

ΔHU/Gy and dyspnoea \geq G2

$<$ median, 16/48 (33.3 %)
$>$ median, 17/47 (36.1 %)

(p=0.77)

De Ruysscher et al. Acta Oncol 2013
Great future ...