

Gene Expression and Epigenetics of Lung Cancer

Ming-Sound Tsao, MD, FRCPC

Princess Margaret Cancer Centre
University of Toronto

Disclosure slide

- Patent holder on the 15-gene signature
- Honorarium from Precision Therapeutics

Topics of Discussion

- 1. Central Dogma in Biology
- 2. Epigenetic regulation of gene expression
- 3. Lung cancer epigenome and microRNA
- 4. Gene expression in lung cancers
- 5. Prognostic gene expression signature

Central Dogma in Biology

Central Dogma in Biology

Epigenetics: A mechanism for regulating gene activity independent of gene sequences that determine which genes are turned on and off in:

- > specific cell type
- different disease state
- response to specific physiological stimulus

Epigenetic Mechanisms

Epigenetic States

Histone H3 (H3F3A)

Writer: establish the epigenetic marks

Eraser: remove the epigenetic marks

Reader: interpret the epigenetic marks

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Martin Peifer^{1,2,57}, Lynnette Fernández-Cuesta^{1,2,57}, Martin L Sos¹⁻⁴, Julie George^{1,2}, Danila Seidel^{1,2,5}, et al

Genomic Deregulation of the E2F/Rb Pathway Leads to Activation of the Oncogene EZH2 in Small Cell Lung Cancer

Bradley P. Coe¹³, Kelsie L. Thu¹³*, Sarit Aviel-Ronen², Emily A. Vucic¹, Adi F. Gazdar³, Stephen Lam¹, Ming-Sound Tsao^{4,5}, Wan L. Lam¹

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network*

CDKN2A Silencing in SqCC

26-29 March 2014, Geneva, Switzerland

Organisers ••••

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski,^{1,2,3,5,18} Alice H. Berger,^{1,5,18} Peter S. Hammerman,^{1,5,18} Bryan Hernandez,^{1,18} Trevor J. Pugh,^{1,5,18} *et al.*

Hallmark of Lung Adenocarcinoma

Micro-RNA (miRNA)

- Small non-coding RNA (18-22 nucleotides long)
- Key regulators in many biological processes
- Negatively regulate gene expression

Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non–Small-Cell Lung Carcinoma

Danit Lebanony, Hila Benjamin, Shlomit Gilad, Meital Ezagouri, Avital Dov, Karin Ashkenazi, Nir Gefen, Shai Izraeli, Gideon Rechavi, Harvey Pass, Daisuke Nonaka, Junjie Li, Yael Spector, Nitzan Rosenfeld, Ayelet Chajut, Dalia Cohen, Ranit Aharonov, and Mahesh Mansukhani

26-29 March 2014, Geneva, Switzerland

O @ grainessers IASLC

GOOD SCIENCE
BETTER MEDICINE
BEST PRACTICE

European Society for Medical Oncology

miRNA May Predict Prognosis of NSCL Patients

Suggested to be superior biomarkers compared to mRNAs\\\\;

- Lower complexity (~2,100 compared to ~30,000 coding mRNAs)
- > Stable against enzymatic degradation and in FFPE specimen

Landi MT, et al. 2010; Clin Cancer Res 16(2):430–441; Patnaik SK, et al. 2010; Cancer Res 70(1):36–45.; Tan X, et al. Clin Cancer Res. 2011; 17(21):6802–6811; Raponi M, et al. Cancer Res. 2009;69(14):5776-83.; Skrzypski M, et al. 2014; *Br J Cancer* 110:991–1000; Yanaihara N et al. 2006; Cancer Cell 9(3):189–198; Yu SL, et al. Cancer Cell. 2008;13(1):48-57.

Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses

Arindam Bhattacharjee*†, William G. Richards*§, Jane Staunton*¶, Cheng Li, Stefano Monti¶, Priya Vasa*, Christine Ladd¶, Javad Beheshti*, Raphael Bueno*, Michael Gillette¶, Massimo Loda*,**, Griffin Weber*, Eugene J. Mark*†, Eric S. Lander¶, Wing Wong¶, Bruce E. Johnson*, Todd R. Golub¶**\$§¶¶, David J. Sugarbaker*§¶¶, and Matthew Meyerson*§§¶¶

Lung Squamous Cell Carcinoma mRNA Expression Subtypes Are Reproducible, Clinically Important, and Correspond to Normal Cell Types

Matthew D. Wilkerson, Xiaoying Yin, Katherine A. Hoadley, et al.

Clin Cancer Res 2010;16:4864-4875. Published OnlineFirst July 19, 2010.

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network*

Nature 2012;489:519-525 (published on line September 9)

Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses

Prognostic Gene Sets from Early Microarray Studies (2001-2004)

Micro-array Prognostic Signatures (2005-07)

	Tumor Type	Sample Size	Gene Set	Validation
Raponi (2006)	SQC	129	50	Independent cohort (n=36; p=0.04)
Lu (2006)	NSCLC	197	64	MSKCC (n=63; stage I only p=1.5 x 10 ⁻⁶) Duke (n=64; stage I only p=6 x 10 ⁻¹¹)
Larsen (2007)	ADC	48	54	Independent cohort (n=55, p=0.039)
Larsen (2007)	SQC	51	111	Independent cohort (n=58; p=0.0008)
Raponi (2006)	ADC	86	47	Duke validation cohort (n=36; p=0.0008)

Raponi M et al. Cancer Res 2006;66:7466-72. Lu Y, et al. PLOS Med 2006;3:e467. Larsen JE, et al. CCR 2007;13:2946; Carcinogenesis 2007;28:76

Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study

Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma:*

Kerby Shedden^{2,3,17}, Jeremy M G Taylor^{3,4,17}, Steven A Enkemann^{5,17}, Ming-Sound Tsao^{6,17},

Timothy J Yeatman^{5,17}, William L Gerald^{7,17}, Steven Eschrich^{5,17}, Igor Jurisica^{6,17}, Thomas J Giordano⁸,

David E Misek^{3,9}, Andrew C Chang^{3,9}, Chang Qi Zhu⁶, Daniel Strumpf⁶, Samir Hanash³, Frances A Shepherd⁶,

Keyue Ding¹⁰, Lesley Seymour¹⁰, Katsuhiko Naoki¹¹, Nathan Pennell¹¹, Barbara Weir¹¹, Roel Verhaak¹¹,

Christine Ladd-Acosta¹², Todd Golub¹², Michael Gruidl⁵, Anupama Sharma⁵, Janos Szoke⁷, Maureen Zakowski⁷,

Valerie Rusch⁷, Mark Kris⁷, Agnes Viale⁷, Noriko Motoi⁷, William Travis⁷, Barbara Conley¹³,

Venkatraman E Seshan^{14,17}, Matthew Meyerson^{11,12,17}, Rork Kuick^{3,17}, Kevin K Dobbin^{15,17}, Tracy Lively^{16,17},

James W Jacobson^{16,17} & David G Beer^{3,9,17}

Nature Medicine 2008;14:822-827

Provided the largest publicly available multiinstitutional derived microarray dataset for future gene expression studies in lung adenocarcinoma

Gene Signatures with Potential Predictiveness for Adjuvant Chemotherapy Benefit

- 1. Zhu CQ, et al. Prognostic and Predictive Gene Signature for Adjuvant Chemotherapy in Resected Non-Small Cell Lung cancer. J Clin Oncol. 2010;28(29):4417-24.
- 2. Kratz JR, et al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. Lancet 2012;379:823-32.
- 3. Van Laar RKV. Genomic signatures for predicting survival and adjuvant chemotherapy benefit in patients with non-small cell lung cancer. BMC Medical Genomics 2012;5:30
- 4. Chen DT, et al. Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J Natl Cancer Inst 2011;103:1859-70
- 5. Tang H, et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 2013;19:1577-86.
- 6. Wistuba I, et al. Validation of a Proliferation-Based Expression Signature as Prognostic Marker in Early Stage Lung Adenocarcinoma. Clin Cancer Res 2013 19:6261-6271.

Prognostic and Predictive Gene Signature for Adjuvant Chemotherapy in Resected Non–Small-Cell Lung cancer

Chang-Qi Zhu, Keyue Ding, Dan Strumpf, Barbara A. Weir, Matthew Meyerson, Nathan Pennell, Roman K. Thomas, Katsuhiko Naoki, Christine Ladd-Acosta, Ni Liu, Melania Pintilie, Sandy Der, Lesley Seymour, Igor Jurisica, Frances A. Shepherd, and Ming-Sound Tsao

26-29 March 2014, Geneva, Switzerland

O Marain exers

Prognostic and Predictive Gene Signature for Adjuvant Chemotherapy in Resected Non–Small-Cell Lung cancer

Chang-Qi Zhu, Keyue Ding, Dan Strumpf, Barbara A. Weir, Matthew Meyerson, Nathan Pennell, Roman K. Thomas, Katsuhiko Naoki, Christine Ladd-Acosta, Ni Liu, Melania Pintilie, Sandy Der, Lesley Seymour, Igor Jurisica, Frances A. Shepherd, and Ming-Sound Tsao

Predicted as High Risk (Poor Survival) by Signature (Stage IB-II, n=67)

Predicted as Low Risk (Good Survival) by Signature (Stage IB-II, n=67)

PREDICTIVENESS OF THE SIGNATURE STILL REQUIRES VALIDATION

Prognostic and Predictive Value of a Malignancy-Risk Gene Signature in Early-Stage Non-Small Cell Lung Cancer

Dung-Tsa Chen, Ying-Lin Hsu, William J. Fulp, Domenico Coppola, Eric B. Haura, Timothy J. Yeatman, W. Douglas Cress

Moffitt Cancer Center and Research Institute

Malignancy-Risk Gene Signature

- Breast ca vs normal breast tissues
- 94 genes (102 probes) in Affymetrix U133A
- 56 (60%) are genes involved in proliferation

Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study

Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma:*1

Nature Medicine 2008;14:822-827

ternational Association for the Study of Lung Cancer

Prognostic Validation in Patients with no Adjuvant Chemotherapy

Director's Challenge consortium

Predictiveness Tested in JBR.10 Patients

High Risk Patients

Low Risk Patients

26-29 March 2014, Gene

				Years				
Numb	er at Risk							
OBS	28	28	23	19	18	17	14	10
ACT	38	32	29	29	26	20	15	9

insight review articles

Stromal fibroblasts in cancer initiation and progression

Neil A. Bhowmick^{1,2,3}, Eric G. Neilson^{3,4} & Harold L. Moses^{1,3,4}

¹Department of Cancer Biology, ²Department of Urologic Surgery, ³The Vanderbilt–Ingram Cancer Center and ⁴Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA (e-mail: hal.moses@vanderbilt.edu)

It is widely accepted that the development of carcinoma — the most common form of human cancer — is due to the accumulation of somatic mutations in epithelial cells. The behaviour of carcinomas is also influenced by the tumour microenvironment, which includes extracellular matrix, blood vasculature, inflammatory cells and fibroblasts. Recent studies reveal that fibroblasts have a more profound influence on the development and progression of carcinomas than was previously appreciated. These new findings have important therapeutic implications.

Nature 432 (18 November 2004): 332-337

A Molecular Signature of Metastasis in Primary Solid Tumors

Table 1 • The 17-gene signature associated with metastasis				
Gene	Gene name	GenBank ID		
Upregulated in metasta	ases			
SNRPF	Small nuclear ribonucleoprotein F	AI032612		
EIF4EL3	Elongation initiation factor 4E-like 3	AF038957		
HNRPAB	Heterogeneous nuclear ribonucleoprotein A/B	M65028		
DHPS	Deoxyhypusine synthase	U79262		
PTTG1	Securin	AA203476		
COL1A1	Type 1 collagen, α1	Y15915		
COL1A2	Type 1 collagen, α2	J03464		
LMNB1	Lamin B1	L37747		
Downregulated in meta	astases			
ACTG2	Actin, γ2	D00654		
MYLK	Myosin light chain kinase	U48959		
MYH11	Myosin, heavy chain 11	AF001548		
CNN1	Calponin 1	D17408		
HLA-DPB1	MHC Class II, DPβ1	M83664		
RUNX1	Runt-related transcription factor 1	D43969		
MT3	Metallothionein 3	S72043		
NR4A1	Nuclear hormone receptor TR3	L13740		
RBM5	RNA binding motif 5	AF091263		

Fibroblasts Cultured from Resected NSCLC and Corresponding Normal Lung

GOOD SCIENCE
BETTER MEDICINE
BEST PRACTICE

EUropean Society for Medical Oncology

Prognostic gene-expression signature of carcinomaassociated fibroblasts in non-small cell lung cancer

Roya Navab^{a,1}, Dan Strumpf^{a,1}, Bizhan Bandarchi^{a,1}, Chang-Qi Zhu^{a,1}, Melania Pintilie^a, Varune Rohan Ramnarine^a, Emin Ibrahimov^a, Nikolina Radulovich^a, Lisa Leung^a, Malgorzata Barczyk^{a,b}, Devang Panchal^a, Christine To^a, James J. Yun^a, Sandy Der^a, Frances A. Shepherd^{a,c}, Igor Jurisica^{a,d,e}, and Ming-Sound Tsao^{a,e,f,2}

11-gene prognostic signature

Cindinamena e s

Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers

Sophie Rousseaux et al.

Sci Transl Med 5, 186ra66 (2013);

DOI: 10.1126/scitranslmed.3005723

European Society for Medical Oncology

A Gene Expression Signature Associated with "K-Ras Addiction" Reveals Regulators of EMT and Tumor Cell Survival

Anurag Singh,¹ Patricia Greninger,¹ Daniel Rhodes,² Louise Koopman,³ Sheila Violette,⁴ Nabeel Bardeesy,¹ and Jeff Settleman^{1,*}

Cancer Cell 2009;15:489–500

An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance

Lauren Averett Byers, Lixia Diao, Jing Wang, et al.

Clin Cancer Res 2013;19:279-290

A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

IASIC

Prognostic Immune Markers in Non-Small Cell Lung Cancer

Kei Suzuki¹, Stefan S. Kachala¹, Kyuichi Kadota^{1,5}, Ronglai Shen², Qianxing Mo², David G. Beer⁶, Valerie W. Rusch¹, William D. Travis³, and Prasad S. Adusumilli^{1,4}

Clin Cancer Res; 17(16); 5247-56.

Predictive Gene Signature in MAGE-A3 Antigen-Specific Cancer Immunotherapy

Fernando Ulloa-Montoya, Jamila Louahed, Benjamin Dizier, Olivier Gruselle, Bart Spiessens, Frédéric F. Lehmann, Stefan Suciu, Wim H.J. Kruit, Alexander M.M. Eggermont, Johan Vansteenkiste, and Vincent G. Brichard

J Clin Oncol 2013;31:2388-2395

Conclusions

- Epigenetic plays important role in lung cancer development,
 differentiation and prognosis, and specific aberrations may constitute
 therapeutic targets
- Gene expression signatures may define additional subtypes of major lung cancer histological types
- Expression signatures can define prognosis and predict benefit from adjuvant chemotherapy, yet routine clinical application still awaits further prospective validation
- Tissue or Pathway specific gene expression signatures may provide important biological insights into complexity of targeted therapies

