Strategies for Integrating Predictive Biomarkers into Clinical Trial Design: A Changing Paradigm

David R. Gandara, MD University of California Davis Cancer Center

Disclosures

- Research Grants: BMS, Genentech, GlaxoSmithKline, Lilly, Merck, Novartis
- Consultant: Ariad, AstraZeneca, Boehringer-Ingelheim, BMS, Celgene, Daiichi-Sankyo, GlaxoSmithKline, Genentech, Lilly, Merck, Novartis, Pfizer, Response Genetics, Synta

Prognostic versus Predictive Biomarkers

Prognostic Marker

Information about disease outcome independent of treatment

Example : EGFR Mutation in NSCLC Mutation +: better prognosis Mutation - : worse prognosis Predictive Marker Information on disease outcome related to a

specific treatment

Example : EGFR Mutation in NSCLC Mutation + : ~70% probability of response to EGFR TKI therapy Mutation - : <5% probability of response to EGFR TKI therapy

Some biomarkers are both prognostic & predictive

Only predictive biomarkers can be used to indicate "which patients should be treated with which drug" (a Targeted Therapy)

Predictive biomarkers can also identify patients who may be harmed by "targeted therapy"

Possible Outcome Scenarios: Marker+ versus Marker-

M+ : Marker positive, Marker value > cut-point M - : Marker negative, Marker value < cut-point

T1: Standard Therapy
T2: New (Experimental) Therapy

Scenario 1: biomarker is neither prognostic nor predictive

Predictive Markers: Scenario 2: T2 benefits M+ pts, but not M- pts

Scenario 3: T2 benefits M+ & M- pts, but effect on M+ pts is more

Scenario 4: T2 benefits M+ pts, but is harmful to M- pts (total interaction)

Scenario 5: Prognostic Marker (no predictive value)

Hoering, Crowley et al: CCR, 2008

Phase II Trial of Erlotinib +/- MetMab: PFS & OS

Targeted Agents can do harm in the wrong patient population

Evolution of NSCLC Subtyping from Histologic to Molecular-Based

Li, Gandara et al: JCO 2013 (adapted from Pao et al)

Integration of Biomarkers into Clinical Practice: Past, Current & Future

Need for Paradigm Shift in Targeted Therapy Clinical Trial Design (Presumes Biomarker Potential)

"All Comer" Phase III Design adding Targeted Therapy to Chemotherapy

- When Marker not known or not validated (analytical)
- Marker (if known) can be retrospectively assessed
- Cautionary Tale: Most Phase III "All Comer" trials in NSCLC targeted therapy fail
- May be random differences in Marker+ and Marker- proportions per arm

Gandara et al: NCI CAPR Workshop, April 2011

Classic RCT Design (Unselected): Phase III Trials of Chemotherapy +/-Targeted Agent* in 1st-line Therapy of Advanced Stage NSCLC

Target	Agent	Survival Benefit
MMPs	Prinomastat, Others	Νο
EGFR TKI	Gefitinib or Erlotinib	Νο
Farnesyl Transferase (RAS)	Lonafarnib	Νο
ΡΚϹα	ISIS 3521	Νο
RXR	Bexarotene	Νο
VEGFR (TKI)	Sorafenib	Νο
VEGF (Mab)	Bevacizumab	Yes
EGFR (Mab)	Panitumumab	Νο
TLR9 Agonist	PF-351	No
EGFR (Mab)	Cetuximab	Yes**
IGR1-R	Figitumumab	Νο
VDA	ASA-404	Νο

*In combination with platinum-based chemotherapy versus chemotherapy

****EGFR IHC positive** from Gandara et al: Clin Lung Cancer, 2012

Biomarker-driven Clinical Trial Designs (selected)

Examples: Trastuzumab in Breast CA EGFR TKIs in EGFR MT+ NSCLC

> Example: SLCG trial of ERCC1-driven therapy

> > Example: NCI-MARVEL trial

Gandara et al: NCI CAPR Workshop, April 2011

Phase III Embedded Biomarker Testing & Validation

Integrated New Drug-New Biomarker Development Paradigm:

from Gandara et al: Clin Lung Cancer, 2012

Unmet Needs in Future NSCLC Clinical Trials when viewed as a Multitude of Genomic Subsets

Li, Mack, Kung, Gandara: JCO 2013 (adapted from Pao et al)

"Strategies for Integrating Biomarkers into Clinical Development of New Therapies for Lung Cancer"

A Joint NCI Thoracic Malignancies Steering Committee-FDA Workshop Bethesda MD – February 2-3, 2012

- Trial Design Challenges in the Era of Biomarker-driven Trials
 - Innovative Statistical Designs
 - Challenges for Community Oncology Practice participation
 - The Patient Perspective
- Drug & Biomarker Co-Development in Lung Cancer
 - Need for Early Co-Development
 - Need for Improved Pre-Clinical Models with clinical relevance
- Development of Future Lung Cancer Trials
 - TMSC Master Protocol Task Force in NSCLC
 - Biomarker-driven trial designs in both early stage adjuvant therapy & advanced stage NSCLC
 - Account for inter-patient tumor heterogeneity & genomic complexity of NSCLC

Selection of Therapeutic Targets for SCCA: Rationale for S1400 Master Lung Protocol

- SCCA repesents an unmet need
- Candidate targets are available from results of TCGA project & other studies, identified by a biomarker
- **Drugs** (investigational) are now available for many of these targets
- Trials can be designed to allow testing of multiple new drugbiomarker combinations at the same time ("MASTER PROTOCOL" concept)

Therapeutic targets SCCA-TCGA 2012

Gene	Event Type	Frequency
CDKN2A	Deletion/Mutation/ Methylation	72%
РІЗКСА	Mutation	16%
PTEN	Mutation/Deletion	15%
FGFR1	Amplification	15%
EGFR	Amplification	9%
PDGFRA	Amplification/Mutati on	9%
CCND1	Amplification	8%
DDR2	Mutation	4%
BRAF	Mutation	4%
ERBB2	Amplification	4%
FGFR2	Mutation	3%

S1400: MASTER LUNG-1: Squamous Lung Cancer- 2nd Line Therapy

TT=Targeted therapy, CT=chemotherapy (docetaxel or gemcitabine), E=erlotinib

Project Chair: V. Papadimitrakopoulou Steering Committee Chair: R. Herbst SWOG Lung Chair: D. Gandara

S1400: MASTER LUNG-1: Squamous Lung Cancer- 2nd Line Therapy

TT=Targeted therapy, CT=chemotherapy (docetaxel or gemcitabine), E=erlotinib

Project Chair: V. Papadimitrakopoulou Steering Committee Chair: R. Herbst SWOG Lung Chair: D. Gandara

S1400 (MASTER LUNG-1) Squamous Lung Cancer- 2nd Line Therapy

- Organizers: FOCR, NCI-TMSC, FDA, FNIH
- Participants: Entire North American Lung Intergroup (SWOG, Alliance, ECOG-Acrin, NRG, NCI-Canada)
- Screening: ~1,000 patients/year
- With 6 arms open simultaneously, anticipate a "hit rate >60% in matching a patient with a drug/biomarker arm

Acquired Resistance to Targeted Therapies in Oncogene-Driven NSCLC: Clinical Practice & Clinical Trials

- Targeted Therapies against Oncogene-Driven Cancers [EGFR mutation+ (Erlotinib) or ALK fusion+ (Crizotinib)] improve response and PFS when compared with chemotherapy
- Even in these most sensitive cancers, acquired resistance is ~universal, with PFS averaging ~10-14 months
- The "subtype" of progressive disease (PD) in individual patients varies greatly (Systemic-PD, Oligo-PD and CNS-PD)
- Hypothesis: "Best" management options at the time of PD varies greatly dependent on the PD subtype (also true for clinical trial designs)

Acquired Resistance to Targeted TKIs: PD Subtype influences Clinical Practice & Clinical Trial Design

Clinical Trial Designs addressing Acquired Resistance in Oncogene-Driven NSCLC with Systemic PD

Systemic-PD

Clinical Trial Designs addressing Acquired Resistance in Oncogene-Driven NSCLC with Systemic PD

Systemic-PD

S1300: SWOG/Intergroup Phase II Trial in ALK-positive NSCLC progressive after Crizotinib

Emergence of ALK Resistance Mechanisms after Crizotinib

- Secondary resistance ALK mutations
- ALK Gene copy number increase
- Transition to EGFR mutation
- Transition to KRAS mutation

Consistent with mathematical models of Evolutionary Biology

Doeble, Camidge et al: CCR 2012

Trial 1007: Crizotinib vs Chemotherapy in ALK+ NSCLC

PFS of Crizotinib vs Pemetrexed or Docetaxel

Shaw et al: NEJM 2013

S1300: SWOG/Intergroup Phase II Trial in ALK-positive NSCLC progressive after Crizotinib

Clinical Trial Designs for Circumvention (Prevention or Delay) of Acquired Resistance in Oncogene-Driven NSCLC

from Gandara, Redman et al: Clin Lung Cancer 2013 (in Press)

Mechanisms of EGFR TKI Resistance (Selected)

Afatinib + Cetuximab in EGFR-mutated NSCLC refractory to EGFR TKI

Response rate: 30% Clinical benefit (DCR): 75%

Janjigian, et al. ESMO 2012

Developing Randomized trials: Afatinib +/- Cetuximab in EGFR mutation+ NSCLC (North American Intergroup)

Afatinib-Cetuximab in EGFR mutant & Erlotinib Acquired Resistance PDX Models:

Results in PDX models mimic the clinical response to Aftatinib-Cetuximab

From Mack, Gandara et al: ASCO 2013

Time-dependent treatment effects on signaling pharmacodynamics (LG703)

SWOG Translational Science Center: Pilot PDX Project in S1403

Summary: Integrating Predictive Biomarkers in Clinical Trial Design

- Master Protocol Designs may provide operational efficiencies to speed up drug-biomarker development & approval, including for drugs directed against uncommon genotypes
- Despite advances with targeted TKIs in Oncogene-driven NSCLC no patients are cured and acquired/adaptive resistance is ~universal
- Subtyping PD into clinically relevant categories should assist in both clinical trial design & day-to-day patient management
- Methods to identify mechanisms of acquired resistance & how to overcome them (or circumvent them) are needed
- Clinical Trial designs will need to account for inter- and intrapatient tumor heterogeneity & the most likely mechanisms of resistance
- Clinically & genomically annotated PDX resources may assist in achieving this latter goal