1st Line management of EGFR/ALK NSCLC

Mark A. Socinski, MD

Professor of Medicine and Thoracic Surgery
Director, Lung Cancer Section, Division of Hematology/Oncology
Clinical Associate Director, Lung SPORE
Co-Director, UPMC Lung Cancer Center of Excellence and Lung and
Thoracic Malignancies Program
University of Pittsburgh

Pretreatment Characteristics and Sensitivity to EGFR TKIs – Phase II Trials 2003-4

Predictive

Not Predictive

Never Smoking
AdenoCa, esp
with BAC features
Female Gender
Asian Ethnicity

EGFR positivity (IHC)
PS
Time since last chemo
Number or type of
prior regimens

1.Fukuoka M, Yano S, Giaccone G et al. *J Clin Oncol.* 2003;21:2237–2246.

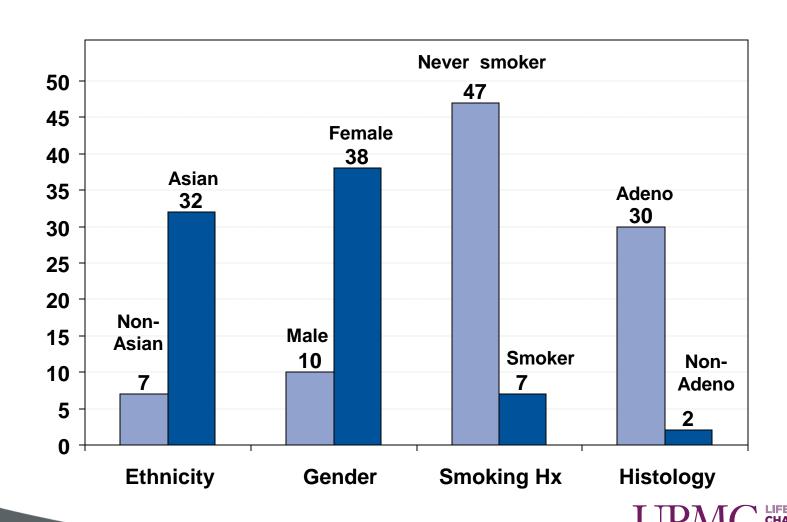
2.Kris MG, Natale RB, Herbst RS, et al. JAMA. 2003; 290:2149-2158.

3.Pérez-Soler et al. *J Clin Oncol* 2004 22 (16): 3238

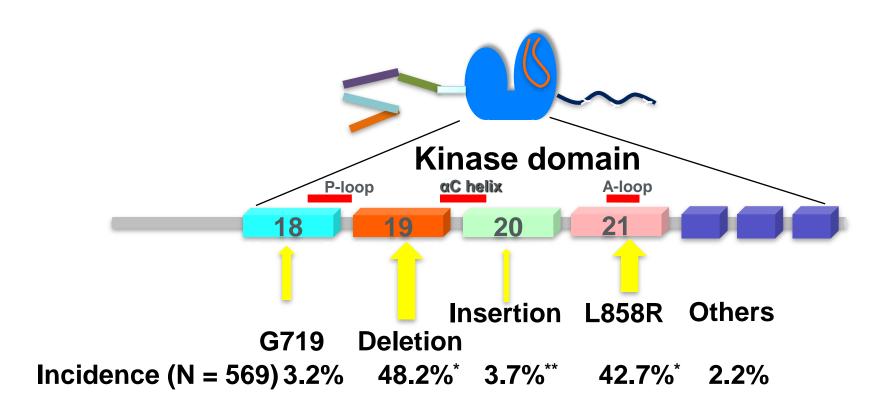
The NEW ENGLAND JOURNAL of MEDICINE

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib.

Thomas J. Lynch, DW Bell, R Sordella, S Gurubhagavatula, RA Okimoto, BW Brannigan, PL Harris, Sara M. Haserlat, JG Supko, FG Haluska, DN Louis, DC Christiani, J Settleman, and DA Haber 20 May 2004; Vol. 350:2129-2139


EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy.

J. Guillermo Paez, Pasi A. Jänne, JC Lee, S Tracy, H Greulich, S Gabriel, P Herman, FJ Kaye, N Lindeman, TJ Boggon, K Naoki, H Sasaki, Y Fujii, Michael J. Eck, William R. Sellers, BE Johnson, and M Meyerson
4 June 2004; Vol. 304:1497-1500



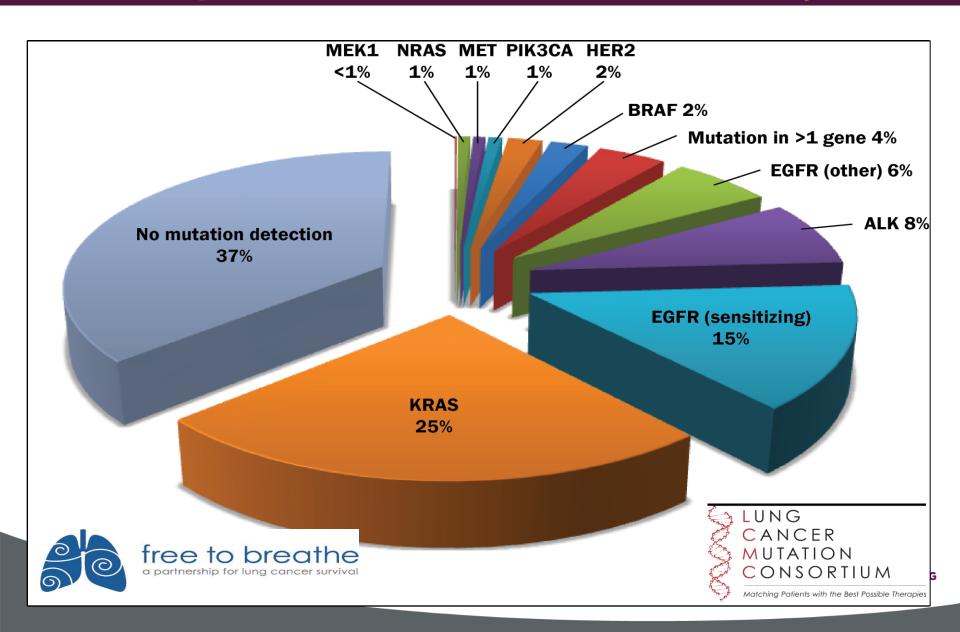
Incidence of EGFR Mutations According to Phenotype (N=2880)

(Mitsudomi et al. Cancer Science 2007)

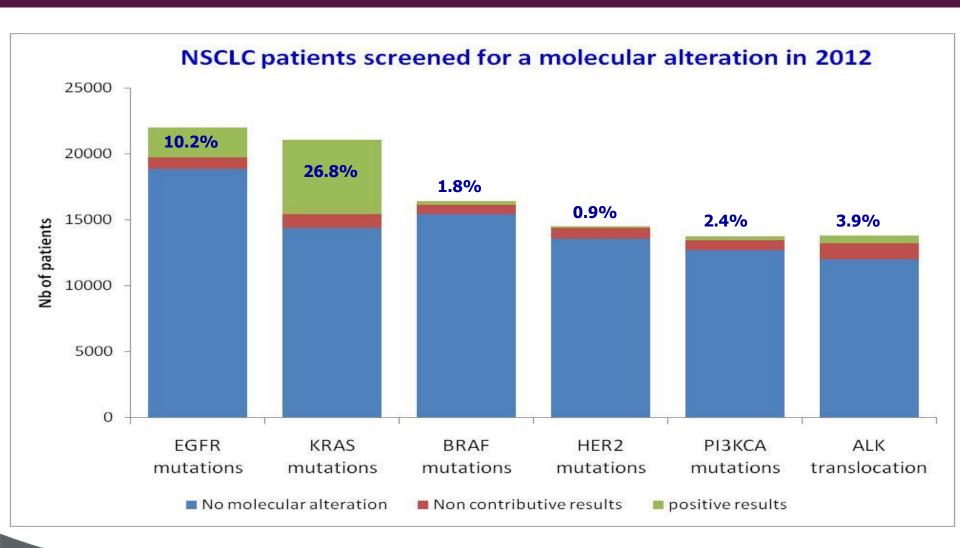
EGFR Mutation: Distribution and Incidence

*Activating mutations with increased EGFR-TKI sensitivity.

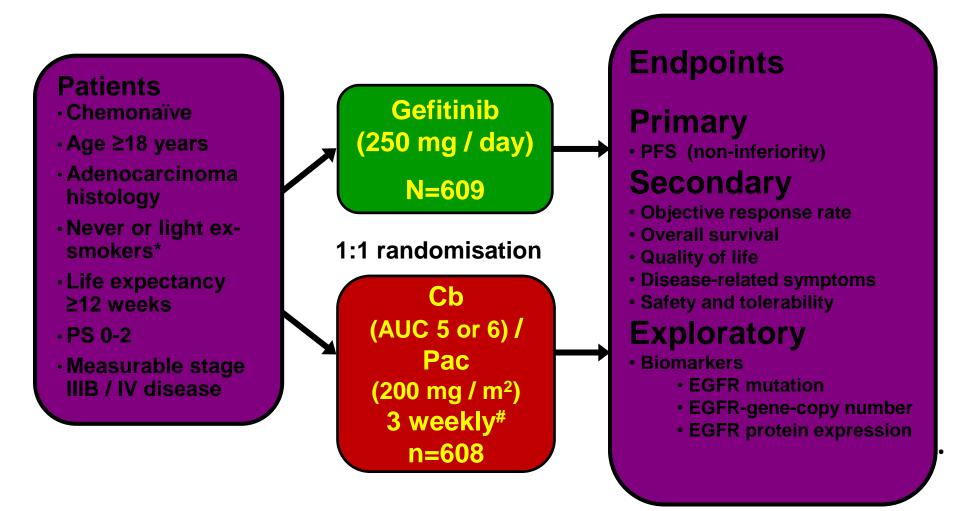
Mitsudomi T et al. Cancer Sci. 2007;98:1817-1824.



^{**}Resistance mutations


Lung Cancer Mutation Consortium Sites

LCMC: Frequency of Oncogenic Drivers 733 Specimens with All 10 Drivers Assayed



The French Experience (2012)

IPASS Study design

*Never smokers, <100 cigarettes in lifetime; light ex-smokers, stopped ≥15 years ago and smoked ≤10 pack years; #limited to a maximum of 6 cycles

Carboplatin / paclitaxel was offered to gefitinib patients upon progression PS, performance status; EGFR, epidermal growth factor receptor

Mok et al, N Engl J Med, 2009

IPASS Study design

Patient

Chemor

Age ≥18

Adenoc
histolog

Never o
smokers

≥12 wee
• PS 0-2
• Measura

IIIB / IV

Life exp

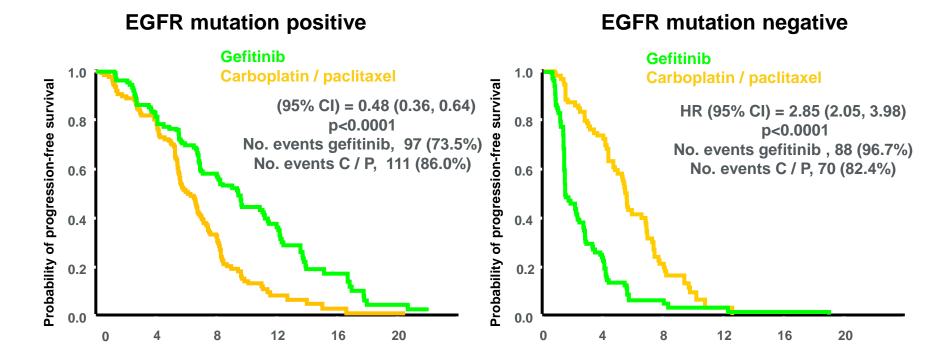
HOMOGENEOUS POPULATION

100% ASIAN
100% ADENOCARCINOMA
79% FEMALE
94% NEVER SMOKERS

3 weekly# n=608 EGFR-gene-copy number

ate

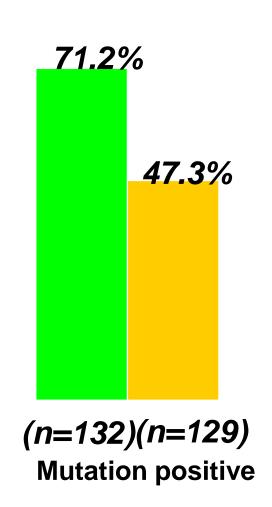
toms


• EGFR protein expression

*Never smokers, <100 cigarettes in lifetime; light ex-smokers, stopped ≥15 years ago and smoked ≤10 pack years; #limited to a maximum of 6 cycles

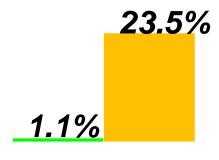
Carboplatin / paclitaxel was offered to gefitinib patients upon progression PS, performance status; EGFR, epidermal growth factor receptor

Mok et al, N Engl J Med, 2009


Progression-Free Survival in EGFR Mutation Positive and Negative Patients (n=437)

Treatment by subgroup interaction test, p<0.0001 EGFR mutation rate – 60%

Objective response rate in EGFR mutation positive and negative patients


Overall response rate (%)

EGFR M+ odds ratio (95% CI) = 2.75 (1.65, 4.60), p=0.0001

EGFR M- odds ratio (95% CI) = 0.04 (0.01, 0.27), p=0.0013

(n=91) (n=85)
Mutation negative

Odds ratio >1 implies greater chance of response on gefitinib

Mok et al, N Engl J Med, 2009

Studies Using EGFR TKIs as Front-Line Treatment

Trial	TKI	Chemo	Type of mutations N = EGFR mut +	No. Patients	Median PFS (months) Response Rate (%)	HR
IPASS (Asia)	gefitinib	carbo/ taxol	T29 (V1) 266	261	9.5 vs 6.3 (inv) 71.2% vs 47.3%	0.48 (0.36-0.64) P<0.01
NEJSG (Japan)	gefitinib	carbo/ taxol	Del19/L858R (94%)	230	10.8 vs 5.4 (ind)	0.30 (0.22-0.41) P<0.001
WJOG (Japan)	gefitinib	cis/doc	Del19/L858R	177	9.2 vs 6.3 (inv)	0.49 (0.34-0.71) p<0.0001
EURTAC (Spain, France, Italy)	erlotinib	cis/doc gem/cis carbo/ doc carbo/gem	Del19/L858R 135	173	9.7 vs 5.2 (inv) 10.4 vs 5.2 (label)	Inv: 0.42 (0.27-0.64) p<0.0001 Ind: 0.37 (0.25-0.54) p=0.0001
OPTIMAL (China)	erlotinib	carbo /gem	Del19/L858R 154	165	13.1 vs 4.6 (inv) 83% vs 36%	0.16 (0.1-0.26) p<0.0001
LUV Lung 2	ofotinih	nom/oio	T29 (V2)	345 (ITT)	11.1 vs 6.9 (ind) 56% vs 23%	Ind: 0.58 (0.43-0.78) p=0.0004
LUX-Lung 3	afatinib po	pem/cis	308 (L858R/Del 19)	308 (common M+)	13.6 vs 6.0 (ind)	Ind: 0.47 (0.34-0.65) p=0.0001
LUX-Lung 6	Afatinib	gem/cis	324 (L858R/del 19)	364	11.0 vs. 5.6 (ind) 67% vs. 23%	Ind: 0.28 (0.20-0.39) P<0.0001

Uncommon EGFR mutations: LUX-Lung trials

LUX-Lung 2 Phase II

N = 129

$$n = 52$$

n = 54

n = 23

LUX-Lung 3

Phase III

N = 345

$$n = 170$$

n = 138

n = 37

LUX-Lung 6

Phase III

N = 364

n = 186

n = 138

n = 40

Patients with uncommon mutations treated with afatinib

Uncommon n = 75

Del19

n = 408

L858R

n = 330

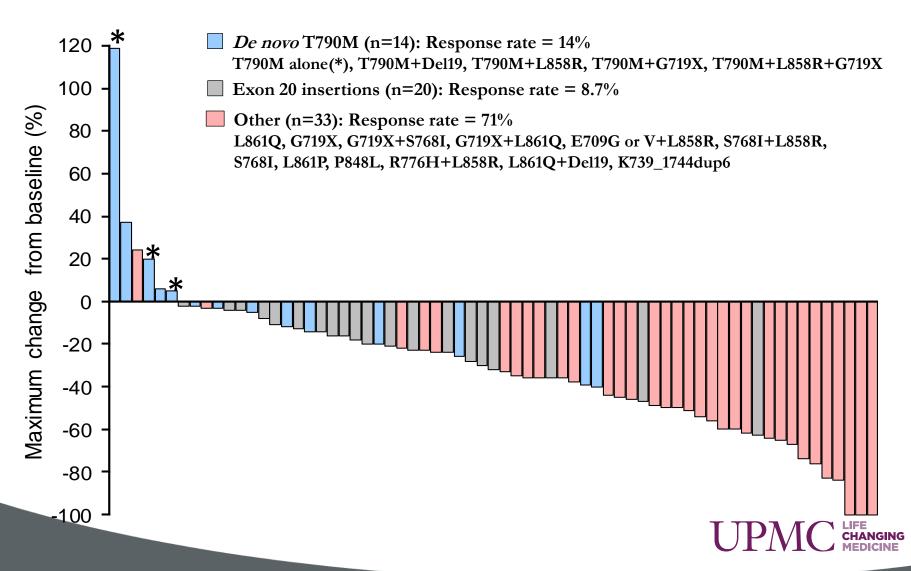
Uncommon

n = 100

n = 23

n = 26

n = 26


UPMC CHANG

Subgroups of patients with uncommon mutations

Categories	<i>De novo</i> T790M	Exon 20 insertions	Other (exon 18, 19, 20, 21)
n=	14	23	38
Mutations (n)	T790M alone (3) T790M+Del19 (3) T790M+L858R (6) T790M+G719X (1) T790M+L858R+G719X (1)	n/a	L861Q alone (12) G719X alone (8) G719X+S768I (5) G719X+L861Q (3) E709G or V+L858R (2) S768I+L858R (2) S768I alone (1) L861P alone (1) P848L alone (1) R776H+L858R (1) L861Q+Del19 (1) K739_1744dup6 (1)

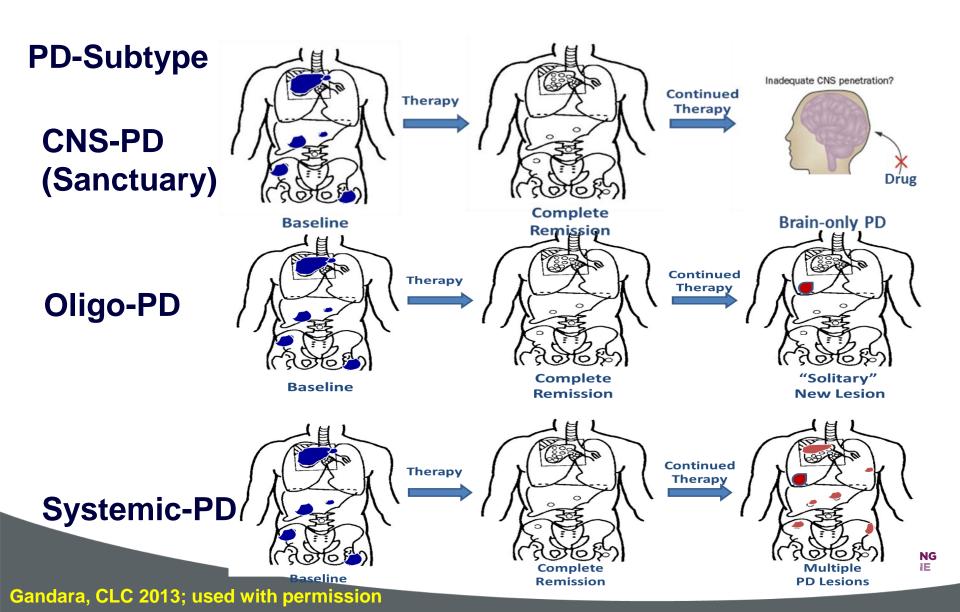
Tumour shrinkage in patients with uncommon mutations

Progression-free survival and overall survival in patients

	<i>De novo</i> T790M n=14	Exon 20 insertions n=23	Other n=38
Median PFS, months (range)	2.9	2.7	10.7
	(0.3-13.8)	(0.4-11.9)	(0.0+-35.8+)
Median OS, months (range)	14.9	9.4	18.6
	(1.5-30.5)	(0.4-32.2+)	(0.0+-51.3+)

T790M + L858R, n=6						
Patient	PFS	os				
1	0.8	8.7				
2	2.6	24.9				
3	6.7	13.2				
4	8.3	30.5				
5	9.6*	24.4*				
6	11.0	20.8				
Median	7.5	22.9				

T790M + Del19, n=3						
Patient	PFS	os				
1	0.3	8.1				
2	1.2	7.5				
3	3.0	24.6				
Median	1.2	8.1				



EGFR TKIs Vs Platinum Doublets in EGFR Mutant NSCLC

- Eight of 8 trials have shown in predominantly exon 19/21 EGFR mutations
 - Improved PFS
 - Improved ORR
 - Better toxicity profile
- Uncommon mutations some may be sensitive but not all
- Zero of 8 trials have shown a survival benefit
 - Cross-over effect (but 100% of patients do not cross-over)
 - Development of resistance

At Least 3 Clinical Subtypes of Acquired Resistance to Targeted TKIs

What are Treatment Options?

- Continue 1st-generation TKI
- Local Rx given to limited site of progression while continuing TKI
- Chemotherapy (either single agent or combination) added to 1st-generation TKI or alone
- Novel therapies:
 - Cetuximab/afatinib
 - CO-1686 Trial
 - AZD9291 Trial
 - Anti-PD-1 or Anti-PD-L1 Trial

Chemo added to TKI

 Few studies have looked at the effectiveness of chemotherapy after TKI in EGFR-mutant cancers

Study	Regimen	N	RR	Design
Gridelli, JCO, 2012	cis/gem	13	15%	Prospective
Wu, IJC, 2010	various	41	15%	Retrospective
Goldberg, ASCO, 2012	various	28	18%	Retrospective

 Only published prospective study of chemo after acquired resistance used pemetrexed/TKI showed a 7 month PFS

Study	Regimen	N	RR	Design
Yoshimura, JTO, 2012	Pem/TKI	27	26%	Prospective

Chemo added to TKI

≤6 cycles **Objectives** IMPRESS trial: Primary** Cisplatin PFS Time from progressive 75 mg/m² IV disease to Secondary **Pemetrexed** randomization ≤4 OS 500 mg/m² IV weeks **Objective EGFR** mutationresponse rate **Gefitinib** Disease positive patients 250 mg oral QD control rate receiving first-line Health-related **Progressiv** Randomize gefitinib who quality of life e disease* (1:1)have responded Safety or had durable **Tolerability Cisplatin** stable disease ≥6 75 mg/m² IV months **Exploratory Biomarkers Pemetrexed**

*Progressive disease based on radiological evaluation (modified Jackman's criteria5) to define

**Primary data cut-off for analysis estimated to occur 11 months after the last patient

IV, intravenous; OS, overall survival; PFS, progression-free survival; QD, once daily

randomized (~190 PFS events, 125 OS events). After primary PFS analysis, patients will be followed until final data cut-off (70% OS maturity). EQ-5D, EuroQoI 5-Dimensions questionnaire;

patients with acquired resistance to prior gefitinib.

Health

(EQ-5D)

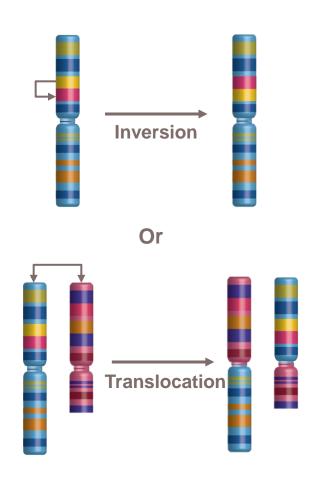
economics

500 mg/m² IV

Placebo

250 mg oral QD

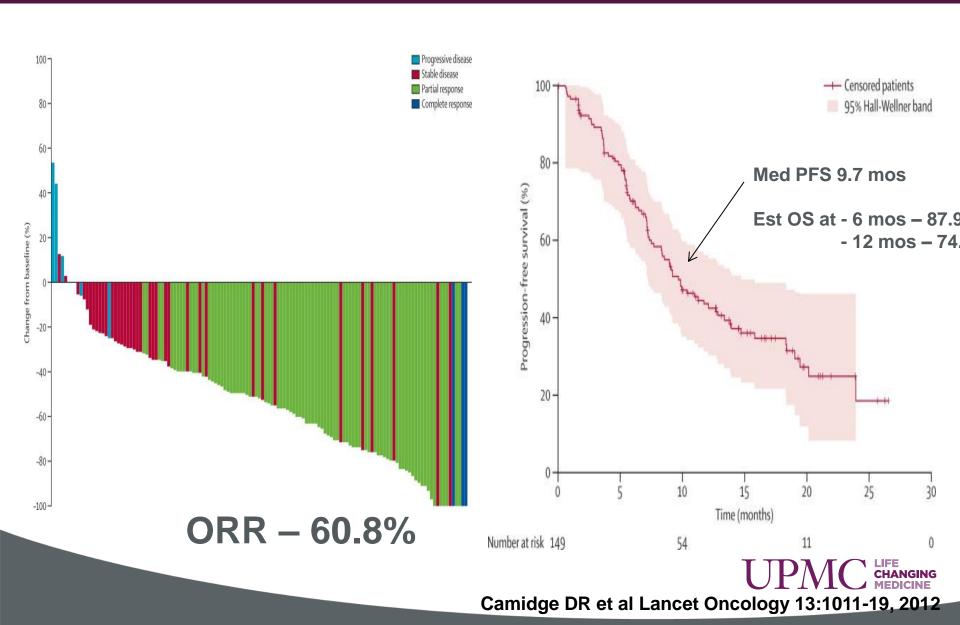
Chemo added to TKI


Study	Phase	N	Primary Endpoint	Patients		Treatment arm
STEP (UMIN000006433)	II	60	PFS	Acquired resistance to Gefitinib	\longrightarrow	Gefitinib + S-1
LOGiK1102 (UMIN000006976)	II	80	PFS	Acquired resistance to 2 nd line~ EGFR-TKI		EGFR-TKI + Singlet chemo Singlet chemo
JMTO LC12-01 (UMIN000007765)	II	60	PFS	≥75 years, Acquired resistance to 1 st line Gefitinib		Gefitinib + DTX DTX
LOGiK1105 (UMIN000008027)	II	70	PFS	≥70 years, Acquired resistance to 1 st line Gefitinib		Gefitinib + Singlet chemo Singlet chemo
NEJ017 (UMIN000008364)	II	100	PFS	≥75 years or PS2, Acquired resistance to 1 st line EGFR-TKI		EGFR-TKI + DTX or PEM DTX or PEM
IMPRESS (NCT01544179)	III	250	PFS	Acquired resistance to 1 st line Gefitinib		Gefitinib + CDDP/PEM CDDP/ PEM

Clinical Conundrum

- If mutation status unknown and patient needs treatment, the lesson of IPASS is chemo must be given
- What if after starting chemo, the mutation test returns and shows a sensitivity mutation
- Options
 - continue chemotherapy +/- maintenance → EGFR TKI (2nd)
 - stop chemotherapy → EGFR TKI
 - add EGFR TKI to chemotherapy
- No published data on this scenario
- Decision should be made based on disease response and treatment tolerance

ALK Rearrangement in Cancer

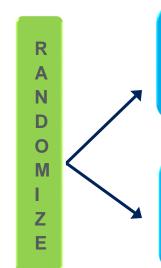


ALK-POSITIVE CANCERS:

- NSCLC *EML4-ALK*, *KIF5B-ALK*, *TFG-ALK* (3-5%)
- Anaplastic large cell
 lymphoma NPM-ALK
- Inflammatory myofibroblastic tumor – *TPM3-ALK, TPM4-ALK*
- Other solid tumors

Updated Phase I Results: Crizotinib in ALK+ NSCLC

PROFILE 1007: Crizotinib vs Chemotherapy as Second-Line Therapy in ALK+ NSCLC


- Primary endpoint: PFS: 7.7 vs 3.0 months (HR 0.49, P<0.0001)
- Secondary endpoint:
 - ORR (65% vs 20%; *P*<0.0001)
 - OS, safety and tolerability, and patient-reported outcomes

Stratification factors: ECOG PS (0/1 vs 2), brain metastases (present/absent), and prior EGFR TKI (yes/no). Shaw AT et al. ESMO 2012. Abstract LBA-1.

PROFILE 1014: Phase 3 First-Line Trial of Crizotinib vs Platinum/Pemetrexed

Eligibility

- Stage III/IV NSCLC
- ALK fusion gene positive
- No prior chemo
- PS 0-1
- $\cdot N = 334$

Pemetrexed plus
Carboplatin or
Cisplatin

Crizotinib 250 mg bid

- Primary endpoint: PFS
- Secondary endpoint: ORR, OS, safety and tolerability, and patient-reported outcomes

First and Second Generation ALK TKIs in Clinical Development

Name	Company	Status	Comments
Crizotinib	Pfizer	1 st and 2 nd line registration trials are ongoing. 2 nd line trial is >75% accrued	Accelerated approval granted August 26, 2011
LDK378	Novartis	Phase 1 dose escalation	Activity observed at 400 mg. Enrolling in the US and Europe
AF802	Chugai	Phase 1/2 in Japan and starting in US	Activity observed in crizotinib-naïve pts
AP26113	Ariad	Phase 1	Some activity against EGFR T790M. Enrolling in the US
ASP3026	Astellos	Phase 1	Similar to TAE684. Enrolling in Japan
CEP-28122	Cephalon	Preclinical	
NMS-E628	Nerviano	Preclinical	
X276/396	Xcovery	Preclinical	

EGFR and ALK

Two examples in NSCLC where molecularly targeted therapies in molecularly defined patient populations are superior to traditional cytotoxic chemotherapy

Conclusions: 1st Line Management of EGFR/ALK NSCLC

EGFR Mutants (exons 19/21)

- 1st line EGFR TKIs improve ORR and PFS
- No difference in OS
- Toxicity more "favorable" with TKIs vs platinum doublets

Uncommon EGFR Mutants

- Mix of sensitive/resistant mutations

ALK translocation positive

- No 1st line data to date but it is common practice to use ALK inhibitors in this setting
- Crizotinib improves ORR and PFS in the 2nd line setting vs standard 2nd line options with no difference in OS

