State of the art and new targets in the treatment of small cell lung cancer:

Mary.obrien@rmh.nhs.uk

Royal Marsden Hospital, London
Chair EORTC lung group
Disclosures

- None for this talk
- Ad boards for BI, MSD, Pierre Fabre, Biomarin
- Research grants from Roche
- Meeting support
US cancer deaths

Annual deaths (US)

Cancer type

- Non-small cell lung
- Colon & Rectum
- Breast
- Pancreatic
- Prostate
- Small cell lung
- Non-Hodgkin Lymphoma
- Liver & Intra-hepatic Biliary
- Ovarian
- Gastric
- Bladder
- Kidney
- Brain
- Myeloma
- Acute Myeloid Leukemia
- Melanoma
Cytotoxics

- Irinotecan – topo 1 inhibitor
- Topotecan – topo 1 inhibitor
- Amrubicin – topo 2 inhibitor

Amrubicin (AMR)

Doxorubicin (DXR)
Irinotecan East vs West – meta

- OS positive in both but magnitude greater in the eastern 40% v 15%
- Snap shot of world Tx

<table>
<thead>
<tr>
<th>Study name</th>
<th>Comparison Outcome</th>
<th>Outcome</th>
<th>Statistics for each study</th>
<th>Hazard ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanna 2006</td>
<td>Blank</td>
<td>OS</td>
<td>0.900 0.715 1.132 -0.899 0.369</td>
<td></td>
</tr>
<tr>
<td>Hermes 2008</td>
<td>Blank</td>
<td>OS</td>
<td>0.710 0.533 0.946 -2.343 0.019</td>
<td></td>
</tr>
<tr>
<td>Lara 2009</td>
<td>Blank</td>
<td>OS</td>
<td>0.930 0.792 1.092 -0.884 0.377</td>
<td></td>
</tr>
<tr>
<td>Schmittel 2011</td>
<td>Blank</td>
<td>OS</td>
<td>0.750 0.543 1.036 -1.746 0.081</td>
<td></td>
</tr>
<tr>
<td>Zatloukal 2010</td>
<td>Blank</td>
<td>OS</td>
<td>0.810 0.650 1.010 -1.874 0.061</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.851 0.770 0.941 -3.151 0.002</td>
<td></td>
</tr>
</tbody>
</table>
Amrubinin not better than PE in first line

PROGRESSION FREE SURVIVAL

Median in Months (95% 2-sided CI)
- Amrub: 5.2 (3.0, 7.5)
- Amrub + Cisp: 6.9 (6.0, 7.5)
- Cisp + Etop: 5.8 (5.3, 7.8)

<table>
<thead>
<tr>
<th>O</th>
<th>N</th>
<th>Number of patients at risk:</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>28</td>
<td>17 12 4 3 2 1 0 0</td>
<td>Amrub</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>24 18 5 1 1 1 1 1</td>
<td>Amrub + Cisp</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>23 14 3 1 0 0 0 0</td>
<td>Cisp + Etop</td>
</tr>
</tbody>
</table>

OVERALL SURVIVAL

Median in Months (95% 2-sided CI)
- Amrub: 11.1 (7.9, 14.5)
- Amrub + Cisp: 11.1 (7.3, 16.3)
- Cisp + Etop: 10.0 (9.2, 13.3)

<table>
<thead>
<tr>
<th>O</th>
<th>N</th>
<th>Number of patients at risk:</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>28</td>
<td>26 22 14 12 5 2 0 0</td>
<td>Amrub</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>28 22 16 10 7 3 2 1</td>
<td>Amrub + Cisp</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>26 23 18 10 4 0 0 0</td>
<td>Cisp + Etop</td>
</tr>
</tbody>
</table>
Amrubicin and cisplatin (AP) with irinotecan and cisplatin (IP) for the treatment of extended-stage small cell lung cancer (ED-SCLC): JCOG0509 – Kotani Y et al

- aged 20 to 70, and ECOG PS 0–1:
- IP: I (60 mg/m²) iv on days 1, 8, and 15, and P (60 mg/m²) iv on day 1, every 4 weeks; or
- AP: A (40 mg/m²) iv on day 1–3, and P (60 mg/m²) iv day 1, 3 weeks
 - Dose of A was decreased from 40 mg/m² to 35 mg/m² due to increased FN

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>IP</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients enrolled</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>Male/Female</td>
<td>120/22</td>
<td>119/23</td>
</tr>
<tr>
<td>Age yrs, median (range)</td>
<td>63 (39–70)</td>
<td>63 (29–70)</td>
</tr>
<tr>
<td>Performance status: 0/1</td>
<td>78/64</td>
<td>80/62</td>
</tr>
<tr>
<td>Measurable lesion +/-</td>
<td>1/141</td>
<td>2/140</td>
</tr>
<tr>
<td>Metastasis (overlapped): lung/bone/brain/liver/others</td>
<td>9/25/32/35/68</td>
<td>14/31/41/45/64</td>
</tr>
</tbody>
</table>

FN, febrile neutropenia

Kotani et al. J Clin Oncol 30, 2012 (suppl; abstr 7003)
Key efficacy and safety data

- Median PFS: 5.7 (IP) vs 5.1 months (AP) (HR 1.44, 95% CI: 1.13–1.83)
- Grade 4 neutropenia (22.5% vs 79.3%) and Grade 3–4 febrile neutropenia (10.6% vs 32.1%) was higher in the AP arm, while Grade 3–4 diarrhoea (7.7% vs 1.4%) was higher in IP arm

Amrubinin not better than IP in first line

Kotani et al. J Clin Oncol 30, 2012 (suppl; abstr 7003)
2nd line: amrubicin not better than topo

Sensitive Patients

- **Amrubicin**: 225/168, Median OS 9.2 months, 95% CI 8.5-10.6
- **Topotecan**: 117/89, Median OS 9.9 months, 95% CI 8.5-11.5

HR=0.936, 95% CI [0.724, 1.211], P-value*=0.6164

Refactory Patients

- **Amrubicin**: 199/168, Median OS 6.2 months, 95% CI 5.5-6.7
- **Topotecan**: 96/86, Median OS 5.7 months, 95% CI 4.1-7.0

HR=0.766, 95% CI [0.589, 0.997], P-value*=0.0469

Unstratified log-rank test
Maintenance chemotherapy

21 RCTs

PFS neg

OS +

Rossi et al

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Maintenance n/N</th>
<th>Follow-up n/N</th>
<th>HR (95% CI)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cullen 1986</td>
<td>12/16</td>
<td>14/16</td>
<td>0.48</td>
<td>0.28 - 0.81</td>
</tr>
<tr>
<td>Cullen 1986</td>
<td>25/29</td>
<td>29/32</td>
<td>0.47</td>
<td>0.28 - 0.81</td>
</tr>
<tr>
<td>Anonymous 1989</td>
<td>131/131</td>
<td>134/134</td>
<td>0.87</td>
<td>0.69 - 1.11</td>
</tr>
<tr>
<td>Byrne 1989</td>
<td>29/34</td>
<td>22/32</td>
<td>1.74</td>
<td>1.00 - 3.03</td>
</tr>
<tr>
<td>Ettinger 1990</td>
<td>24/25</td>
<td>21/25</td>
<td>1.57</td>
<td>0.87 - 2.82</td>
</tr>
<tr>
<td>Ettinger 1990</td>
<td>18/18</td>
<td>17/18</td>
<td>1.77</td>
<td>0.91 - 3.44</td>
</tr>
<tr>
<td>Giaccone 1993</td>
<td>209/219</td>
<td>206/215</td>
<td>1.04</td>
<td>0.68 - 1.28</td>
</tr>
<tr>
<td>Johnson 1993</td>
<td>55/72</td>
<td>53/79</td>
<td>0.46</td>
<td>0.32 - 0.67</td>
</tr>
<tr>
<td>Belth 1996</td>
<td>58/65</td>
<td>62/64</td>
<td>0.94</td>
<td>0.65 - 1.34</td>
</tr>
<tr>
<td>Sculler 1996</td>
<td>36/45</td>
<td>41/46</td>
<td>0.89</td>
<td>0.57 - 1.39</td>
</tr>
<tr>
<td>Schiller 2001</td>
<td>100/112</td>
<td>102/111</td>
<td>0.99</td>
<td>0.75 - 1.30</td>
</tr>
<tr>
<td>Hanna 2002</td>
<td>65/72</td>
<td>70/72</td>
<td>0.73</td>
<td>0.52 - 1.03</td>
</tr>
<tr>
<td>Han 2008</td>
<td>17/21</td>
<td>16/24</td>
<td>0.79</td>
<td>0.40 - 1.63</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>779/859</td>
<td>787/868</td>
<td>0.89</td>
<td>0.81 - 0.98</td>
</tr>
</tbody>
</table>

\[\chi^2 \text{Het} = 40.37 \text{ df } = 12 \text{ (p=0.0001) } R^2 = 70.9\% \]

Test for overall effect \(Z = 3.33 \text{ (p=0.02) } \)

02 Interferon-alpha				
Mattson 1992	62/91	66/87	0.70	0.50 - 0.98
Kelly 1995	50/64	51/68	0.94	0.64 - 1.39
Tummarello 1997	12/14	11/12	0.53	0.23 - 1.20
Lebeau 1999	68/84	66/88	0.81	0.56 - 1.17
Subtotal (95% CI)	190/253	184/235	0.78	0.64 - 0.96

\[\chi^2 \text{Het} = 2.17 \text{ df } = 3 \text{ (p=0.64) } R^2 = 0\% \]

Test for overall effect \(Z = 2.39 \text{ (p=0.02) } \)

03 Interferon-gamma				
Jett 1994	40/51	35/49	1.20	0.76 - 1.89
Van Zandwijk 1997	56/65	54/62	1.03	0.71 - 1.49
Subtotal (95% CI)	96/116	89/111	1.09	0.62 - 1.46

\[\chi^2 \text{Het} = 0.27 \text{ df } = 1 \text{ (p=0.60) } R^2 = 0\% \]

Test for overall effect \(Z = 0.61 \text{ (p=0.54) } \)

04 Other biological agents				
Shepherd 2002	194/266	197/266	1.01	0.83 - 1.23
Giaccone 2005	195/257	183/256	1.19	0.96 - 1.46
Arnold 2007	53/53	52/54	1.01	0.60 - 1.69
Pujol 2007	25/49	30/43	0.74	0.49 - 1.12
Subtotal (95% CI)	467/625	462/621	1.05	0.92 - 1.20

\[\chi^2 \text{Het} = 4.45 \text{ df } = 22 \text{ (p=0.22) } R^2 = 32.6\% \]

Test for overall effect \(Z = 0.75 \text{ (p=0.45) } \)

| Total (95% CI) | 1522/1835 | 1522/1835 | 0.93 | 0.87 - 1.00 |

\[\chi^2 \text{Het} = 55.51 \text{ df } = 22 \text{ (p=0.0001) } R^2 = 60.1\% \]

Test for overall effect \(Z = 1.95 \text{ (p=0.05) } \)
4-6 cycles of CT (cis 80 mg/m²/carbo AUC5 plus etop 100 mg/m² d1-3 q3w)
Maintenance sunitinib 150 mg/day loading then 37.5 mg/day/placebo

Primary endpoint: PFS

- 144 patients; 138 patients received CT;
- 95 randomised to maintenance; 85 received (44 sunitinib, 41 placebo)
- PFS on maint: 2.3 vs. 3.8 mths p v sunit (HR 1.53; 90% CI 1.03–2.27; p=0.037)
- OS: 6.9 v 9.0 mths p v sunitinib (HR 1.17; 90% CI 0.77–1.78; p=0.27)
- 40% crossover

- G 3/4 tox in ≥5% with sunitinib: fatigue, neuts, platelets and hyponatremia
VEGF inhibitors – EORTC

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Target</th>
<th>Stage of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>VEGF</td>
<td>Phase III</td>
</tr>
<tr>
<td>IMC-1121b</td>
<td>VEGFR-2</td>
<td>Phase I</td>
</tr>
<tr>
<td>IMC-18F1</td>
<td>VEGFR-1</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Aflibercept</td>
<td>VEGF-A, PIGF</td>
<td>Phase III</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>B-RAF, C-RAF, VEGFR2, VEGFR2, PDGFR-β, Kit</td>
<td>Phase III</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>VEGFR1, VEGFR2, PDGFR-β, c-Kit</td>
<td>Phase III</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>VEGF, EGFR</td>
<td>Phase III</td>
</tr>
<tr>
<td>Cediranib</td>
<td>VEGFR1, VEGFR2, VEGFR3</td>
<td>Phase II</td>
</tr>
<tr>
<td>Axitinib</td>
<td>VEGFR1, VEGFR2, VEGFR3, PDGFR-β, c-Kit</td>
<td>Phase II</td>
</tr>
<tr>
<td>Motesanib</td>
<td>VEGFR1, VEGFR2, VEGFR3, PDGFR-β, c-Kit</td>
<td>Phase I</td>
</tr>
<tr>
<td>Vatalanib</td>
<td>VEGFR1, VEGFR2, VEGFR3, PDGFR-β, c-Kit</td>
<td>Phase III</td>
</tr>
</tbody>
</table>

- **Pazopanib**: VEGFR1, VEGFR2, VEGFR3, PDGFR-α, PDGFR-β, c-Kit, Phase I
- **CP-547,632**: VEGFR2, PDGF, Phase II
- **BIBF 1120**: VEGFR1, VEGFR2, VEGFR3, PDGFR, FGFR, Phase II
- **XL647**: EGFR, HER2, EphB4, VEGF, Phase II
- **AEE788**: EGFR, HER2, VEGF, Phase I
- **KRN951**: VEGFR1, VEGFR2, PDGFR, c-Kit, Phase I
- **ABT-869**: VEGF, PDGF, Phase I
- **OSI-930**: Kit, KDR, Phase I
- **BMS-690514**: pan HER, VEGF, Phase I
- **Thalidomide**: BFGF, Phase III
- **Lenalidomide**: BFGF, Phase I
- **Pomalidomide**: BFGF, Phase I
- **Cilengitide**: αvβ3, αvβ5, Phase I
- **TNP-470**: Methionine aminopeptidase, Phase I
- **AMG 386**: Angiopoietin, Tie2, Phase I
- **DMXAA**: Vascular disrupting agent, Phase II

VEGF, vascular endothelial growth factor; **PDGF**, platelet-derived growth factor.
Phase 2 sunitinib in SCLC – secondline with early PET for response

2nd line treatment: Sunitinib, to which he responded well and continued for 22 cycles.
Sudden death 20 months later – prob PE
After 4 weeks treatment with sunitinib
Case 2: Sunitinib Responder

- 70 years old Caucasian never smoker female.
- Presenting symptoms: breathlessness, cough and haemoptysis.
- PS = 1.
- History of malignant melanoma 20 years ago.
- Diagnosis: Pure SCLC, limited stage.
- 1st line treatment: Concomitantchemoradiotherapy (6 cycles Carboplatin/Etoposide and 50 Gy radical radiotherapy) and PCI, with good response.
- Relapse: 2.5 years later.
- 2nd line treatment: Sunitinib (10 cycles), with very good response.
- Sunitinib had to be discontinued after 10 months due to toxicities, followed by quick disease progression.
- Re-biopsy was performed
After 4 weeks treatment with sunitinib
Other news

- Pravastatin may stop the growth of tumour cells and make tumour cells more sensitive to chemotherapy – phase III in UK negative

- enoxaparin in SCLC (Fragmatic)

-new agents
• At least 17 members of PARP family (PARP-1 and 2 are activated by DNA damage)
• PARP-1 localizes to the site of DNA damage and recruits proteins that mediate repair
• Double knockout of PARP 1 & 2 results in embryonal lethality to mice

Dantzer et al, Biochemistry 2000; McCabe et al, Cancer Res 2006

Poly(ADP-ribose) sub-units

PARP-1 mediated SSB repair

Dantzer et al, Biochemistry 2000; McCabe et al, Cancer Res 2006
Parp inhibitors

- Olaparib
- Velaparib
- Niraparib
- BMN673 – PARP trap

Stabilizing the PARP DNA complex

2/18 in SCLC in phase I

Biomarker is the BRCA 1 and 2 mutation, brcaness or protein expression
Not helpful in SCLC
ECOG 2511 - 3 arm
Phase I/II PE +/- veliparib (ABT-888)

- Placebo-controlled first line randomized phase II study

Stratification:
1. Gender (M vs. F)
2. LDH ≤ upper limits of normal or > ULN

- 135 patients
- SCLC by histology
- Extensive stage disease
- ECOG PS: 0-1
- Adequate hepatic, renal and marrow function
- Eligibility criteria met

Experimental Arm (D):
- Veliparib pills (RP2D^2) bid po Days 1-7^1
- Etoposide 100 mg/m^2 in 500 ml NS Days 1-3
- Cisplatin 75 mg/m^2 in 250 ml NS Day 1
- Every cycle for 4 cycles

Control Arm (E):
- Placebo bid po Days 1-7^1
- Etoposide 100 mg/m^2 in 500 ml NS Days 1-3
- Cisplatin 75 mg/m^2 in 250 ml Day 1
- Every cycle for 4 cycles

Long-Term Follow-Up

Phase II Accrual Goal = 150
Cycle = 3 weeks (21 days)
IV doses are based on actual weight

Study Chair: Taofeek Owonikoko MD PhD
Randomized phase II study of temozolomide with or without veliparib

Recurrent SCLC after 1 or 2 prior regimens
No chemotherapy or radiotherapy in prior 3 weeks
ECOG PS ≤1

Double blind

50
Veliparib 40mg PO BID × 7 days
Temozolomide 200mg/m²/d × 5 days
28 day cycle

50
Placebo 40mg PO BID × 7 days
Temozolomide 200mg/m²/d × 5 days
28 day cycle

Study Chair: Cathy Pietanza MD

Participating Sites:
MSKCC
SKCCC at JHU
MDACC
Seidman CC
Temozolomide – old (alkylating agent, cross BBB, - new - SCLC has aberrantly methylated *MGMT*

- Overall RR 20% (95% CI 11–32%)
- 13% in refractory cohort
- Of 13 patients with brain metastases
 - 4/13 with CR in brain; 1/13 with PR
 - ORR 38% in the CNS
Startup

- Randomised trial of olaparib as maintenance chemotherapy in ext SCLC post 4-6 chemotherapy - STOMP
- Same design as French and UK NSCLC
- BMN 673
Aurora Kinases

- Antimitotic agents ABC oral
 - A MLN8237 – 2 responses
 - B AZD1152 - alisertib

- 38% neutropenia, 39% alopecia
- $10/47 = 21\%$
- 3/11 responses in refractory 27%
- 7/36 19% in sensitive

- Alisertib + weekly paclitaxel
- C-Myc amplification and sensitivity
Models for Hedgehog activity in cancer - Hh sonic – required for lung development, upregulated in SCLC and inhibition delays recurrence in primary SCLC models – no mutation in sclc

Type-1
Cancers with mutations in Hh signaling

Type-2
Cancers with autocrine requirement for Hh

Type-3
Cancers with paracrine requirement for Hh

BCC medulloblastoma
glioblastoma myeloma
SCLC
pancreatic, colon cancer
E1508: a randomized phase II study of chemotherapy +/- vismodegib or (IGF-1R mAb) A12
T cell mediated immune rejection of tumours

Therapeutic intervention

Tumour vaccine
e.g. MAGE or intrinsic (unknown)

Presentation of tumour-specific/associated Ag

Activation of Tumour-specific T cells

CD137
CD28
IL-2
IL-15

Co-stimulatory T cell Signals

Agonists

Other immunosuppressive factors environment

T regulatory cells
Myeloid suppressor cells
IL-10, TGFbeta

Negative Regulatory signals
(immune check-points)

CTLA-4
PD1
B7-1

Antagonists

e.g. MAGE or intrinsic (unknown)
Sequential Ipilimumab Improves Irpfs In ED SCLC 1st Line Therapy With Paclitaxel / Carboplatin

Reck M et al., Ann Oncol. 2013 Jan;24(1):75-83

Being repeated as Ideate (CA 184-156), sequential ipi, Stimuli – limited stage
Immunotherapy and SCLC

- Is it logical?? – very highly mutated – as is melanoma

- Phase 2 randomized study, ipi TC v TC PFS 5.7m vs 4.6m, HR = 0.72, P = 0.05, no improvement when used concurrently Reck et al Ann Oncol 2013.

- nivolumab (anti -PD1) v N + ipilimumab (CTL 4) followed by nivo maintenance
Ongoing studies

- Parp inhibitors/Temozolamide
- Aurora kinases/hedgehog/immuno
- 2 studies French & Italian: recruiting

 Poster at meeting 2nd line paclitaxel weekly + bev

- NGR-hTNF in Combination With Doxorubicin in Patients Affected by Metastatic Small Cell Lung Carcinoma (NGR007): MolMed

- Secondline +/- valproic acid

 Old drugs new indication

- CE + anti-NCAM – anti CD 56 BB 10901 Immunogen
 NORTH study – closed toxicity
Small-cell lung cancer sequencing project

Candidate *driver* genome alterations in SCLC
Some SCLC genes....

- **Hot spot mutations**
 - *TP53, RB1, PIK3CA, CDKN2A, PTEN*
 - RAS family regulators (*RAB37, RASGRF1, RASGRF2*)
 - Chromatin modifiers (*EP300, DMBX1, MLL2, MED12, etc.*)

- **Hot spot mutations** *PLUS q-score*
 - *RUNX1T1, CDYL, RIMS2*

- **Gene families and pathways**
 - PI3K pathway, Notch and Hedgehog, glutamate receptor family, DNA repair/checkpoint, SOX family, histones

- **Focal amplifications**
 - *MYC, SOX2, SOX4, KIT*

- **Recurrent translocations and fusion genes**
 - Recurrent: *RLF–MYCL1*
 - Kinase fusions

Rudin et al., *Nat Genet* 2012
Proteomic analysis of SCLC

Higher in SCLC:
- cKit
- IGFBP2
- LKB1
- AMPK
- TSC2
- p16
- p21
- Cyclin D1
- Rb
- PARP1
- E2F1
- TS
- EZH2
- DNA repair
- Apoptosis

Higher in NSCLC:
- EGFR
- Her2
- cMet
- Axl
- VEGFR2
- PI3K
- Akt
- mTOR
- p70S6K
- S6
- Ras
- Raf
- MEK
- MAPK
- Src
- STAT
- E-cadherin
- B-catenin
- PTCH
- Notch3

Byers et al., Cancer Discovery, 2012
SCLC – biomarker search

N = 60 patients

- **BRAF mutation**: 1 positive (*V600E* mutation), 46 wild type and 13 invalid.
- **EGFR mutation**: 31 wild type and 29 invalid.
- **KRAS mutation**: 35 wild type and 25 invalid.
- **ALK gene rearrangement**: 58 with no rearrangements detected and 2 invalid.
- **MET gene amplification**: 40 no amplification, 18 invalid.
exon 15 (including codon V600) (CE-SSCA)
capillary electrophoresis-single strand conformation analysis
A Case with Positive V600E BRAF Mutation

- 55 years old Caucasian male smoker.
- Presenting symptoms: increasing shortness of breath on exertion and dry cough.
- PS = 1

- A history of squamous cell carcinoma 6 months before the new diagnosis, treated by right lobectomy.

- Biopsy diagnosis: *Pure SCLC, limited stage.*

- Treatment: Radical chemoradiotherapy (4 cycles of Carboplatin/Etoposide and radiotherapy 36Gy in 12 fractions) and PCI.
- Sudden death 9 months from MI.
- Review pathology – mixed pathology in resected specimen
Case 2 sunitinib: Whole Exome Sequencing of initial sample

- **68 somatic mutations** (50 substitutions and 18 indels) were detected in the relapsed sample that did not occur in the germline. 28 out of the 68 were predicted to alter protein sequences.

- 311 germline variants and 2 somatic mutations were enriched in the relapsed sample due to LOH and predicted to alter protein sequences.

- When compared to the Cancer Gene Census (CGC), a set of 5 genes in the CGC list were found to contain missense or splice site mutations that are either somatic or enriched in carcinoid cells due to LOH. These genes are:
 - **MEN1**: essential splice site
 - **PDGFRA** (a RTK target for sunitinib): missense
 - **BCL6**: missense
 - **MLH1**: missense
 - **BRCA2**: missense

- **MLH1, BCL6, BRCA2 and PDGFRA** were predicted to be neutral with regard to the protein function.

- **REPEAT biopsy …….**
Case 2 sunitinib: Whole Exome Sequencing of initial sample

- 68 somatic mutations (50 substitutions and 18 indels) were detected in the relapsed sample that did not occur in the germline. 28 out of the 68 were predicted to alter protein sequences.

- 311 germline variants and 2 somatic mutations were enriched in the relapsed sample due to LOH and predicted to alter protein sequences.

- When compared to the Cancer Gene Census (CGC), a set of 5 genes in the CGC list were found to contain missense or splice site mutations that are either somatic or enriched in carcinoid cells due to LOH. These genes are:

 - **MEN1**: essential splice site
 - **PDGFRA** (a RTK target for sunitinib): missense
 - **BCL6**: missense
 - **MLH1**: missense
 - **BRCA2**: missense

- MLH1, BCL6, BRCA2 and PDGFRA were predicted to be neutral with regard to the protein function.

- **REPEAT biopsy ……. ATYPICAL CARCINOID**
Heterogeneity in SCLC

- SCLC - atypical carcinoid
- Adeno mutated – SCLC
- Squamous – SCLC – with bRAF
Words of warning

- One swallow does not make a summer
- Amrubicin in refractory
- Paclitaxel weekly + bevacuzimab

- Never smoking SCLC – think carcinoid
- Unexpected stable disease
- Sunitinib works for carcinoid

- Remember heterogeneity.
- Small biopsies are giving erroneous leads…….