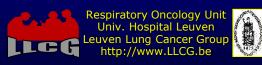


Geneva, Switzerland 26-29 MARCH 2014

EUROPEAN LUNG CANCER CONFERENCE

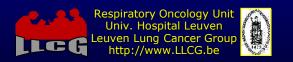


Discussion abstract 240 Plasma microRNA in screening (Dr. U. Pastorino)

J. Vansteenkiste

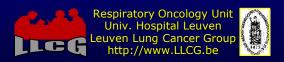
Respiratory Oncology Unit
Dept. Pulmonology
Univ. Hospital Leuven
Leuven Lung Cancer Group

Disclosure


None for this abstract

General: consultant (GSK-BIO, Merck-Serono),
 speaker (Eli-Lilly), research funding (Astra Zeneca)

Thanks to Dr. Pastorino for preview of slides


- NLST: CT screening level I evidence
 - IN: current or former (quit <15 years) smokers, 55-74 years, 30 pack-year history</p>
 - **WITH:** three annual rounds of low-dose CT screening
 - THAT: a 20% decrease in lung cancer-specific mortality
- BUT ...need to screen 320 to prevent 1 lung cancer death

- NLST: CT screening level I evidence
 - IN: current or former (quit <15 years) smokers, 55-74 years,
 30 pack-year history
 - **WITH:** three annual rounds of low-dose CT screening
 - THAT: a 20% decrease in lung cancer-specific mortality
- BUT ...need to screen 320 to prevent 1 lung cancer death

populations at risk false pos findings outcome of screen-detected cancers

- NLST: CT screening level I evidence
 - IN: current or former (quit <15 years) smokers, 55-74 years,
 30 pack-year history
 - **WITH:** three annual rounds of low-dose CT screening
 - THAT: a 20% decrease in lung cancer-specific mortality
- BUT ...need to screen 320 to prevent 1 lung cancer death

distress – cost improve 1:320 ratio predict best candidates false pos findings

morbidity - cost of procedures for diagnosis outcome of screen-detected cancers

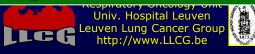
optimal Rx according to prognosis

- NLST: CT screening level I evidence
 - IN: current or former (quit <15 years) smokers, 55-74 years,
 30 pack-year history
 - <u>WITH:</u> three annual rounds of low-dose CT screening
 - THAT: a 20% decrease in lung cancer-specific mortality
- BUT ...need to screen 320 to prevent 1 lung cancer death

distress – cost improve 1:320 ratio predict best candidates false pos findings

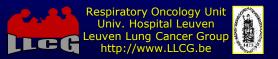
morbidity - cost of procedures for diagnosis outcome of screen-detected cancers

optimal Rx according to prognosis


"MSC has

predictive,

diagnostic &

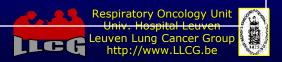

prognostic

value"

- Characteristics of early detection biomarkers
- "Predictive" aspect
 - help to improve definitions of populations at risk
- "Diagnostic" aspect
 - help in the DD of screen-detected nodules
- "Prognostic" aspect
 - help in therapy choice for best outcome of screen-detected nodules

Very large number of early detection biomarker studies

Targets


- DNA: promoter hypermethylation, microsatellite instability, loss of heterozygosity (LOH), chromosomal aneusomy
- o mRNA, micro RNA (miRNA)
- tumour-associated antibodies, antigens, proteomic profiles
- volatile organic compounds

Specimens

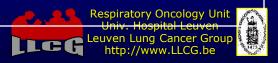
- bronchial biopsies or lavage
- induced sputum
- buccal/nasal swabs
- plasma, serum, circulating tumour cells
- exhaled breath

Phases

- early description
- small retrospective evidence
- large retrospective evidence from RCTs
- prospective testing
- large prospective validation in RCT

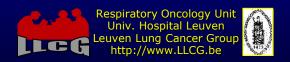
Very large number of early detection biomarker studies

Targets

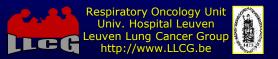

- DNA: promoter hypermethylation, microsatellite instability, loss of heterozygosity (LOH), chromosomal aneusomy
- o mRNA, micro RNA (miRNA)
- tumour-associated antibodies, antigens, proteomic profiles
- volatile organic compounds

Specimens

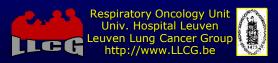
- bronchial biopsies or lavage
- induced sputum
- buccal/nasal swabs
- plasma, serum, circulating tumour cells
- exhaled breath


Phases

- early description
- small retrospective evidence
- large retrospective evidence from RCTs
- prospective testing
- large prospective validation in RCT



- Many with high sensitivity and specificity (up to 100%) in feasibility studies
- None at present recommended as tests for screening
 - lack of validation
 - unsure if appropriate for risk individuals or very early stages
- Best candidates
 - o miRNAs
 - high tissue specificity and incredible stability -> easily detectable and quantifiable in body fluids
 - o promising in work-up of LDCT detected nodules
 - VOCs in exhaled breath
 - o non-invasive and repeatable
 - o moderate accuracy to distinguish lung cancer from controls


- Characteristics of early detection biomarkers
- □ "Predictive" aspect
 - help to improve definitions of populations at risk
- "Diagnostic" aspect
 - help in the DD of screen-detected nodules
- "Prognostic" aspect
 - o help in therapy choice for best outcome of screen-detected nodules

Screening and early detection > defining populations at risk

Quintile of 5-Year Risk of Lung-Cancer Death	Participants	Lung-Cancer Cases		Lung-Cancer Pos Deaths			e Screening esults	Number of False Positives per Prevented Lung-Cancer Death†	Number Needed to Screen†‡
		Total No.	Stage I†	Total No.	Prevented†	Total No.	False Positive†∫		
	no. (%)		no. (%)		no. (%)		no. (%)		
All quintiles	26,604 (100)	1083	530 (48.9)	354	88 (24.9)	10,151	9484 (93.4)	108	302
Quintile 1: 0.15-0.55%	5,276 (19.8)	71	40 (56.3)	20	1 (5.0)	1,699	1648 (97.0)	1648	5276
Quintile 2: 0.56–0.84%	5,310 (20.0)	105	59 (56.2)	35	10 (28.6)	1,879	1806 (96.1)	181	531
Quintile 3: 0.85–1.23%	5,396 (20.3)	182	84 (46.2)	45	13 (28.9)	2,024	1911 (94.4)	147	415
Quintile 4: 1.24–2.00%	5,314 (20.0)	263	132 (50.2)	73	31 (42.5)	2,123	1973 (92.9)	64	171
Quintile 5: >2.00%	5,308 (20.0)	462	215 (46.5)	181	33 (18.2)	2,426	2146 (88.5)	65	161

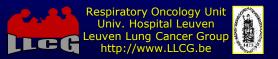
Screening and early detection > defining populations at risk

Time dependency analysis of diagnostic performance of MSC, at 6, 12, 18 and 24 months intervals between blood sampling and lung cancer diagnosis¹

Months from blood sampling to lung cancer detection	SE	SP	PPV	NPV
6	83%	80%	18%	99%
12	86%	81%	22%	99%
18	86%	81%	23%	99%
24	87%	81%	25%	99%

¹Heagerty PJ., Biometrics 2000, 2007

Screening and early detection > defining populations at risk


Time dependency analysis of diagnostic performance of MSC, at 6, 12, 18 and 24 months intervals between blood sampling and lung cancer diagnosis¹

Months from blood sampling to lung cancer detection	SE	SP	PPV	NPV
6	83%	80%	18%	99%
12	86%	81%	22%	99%
18	86%	81%	23%	99%

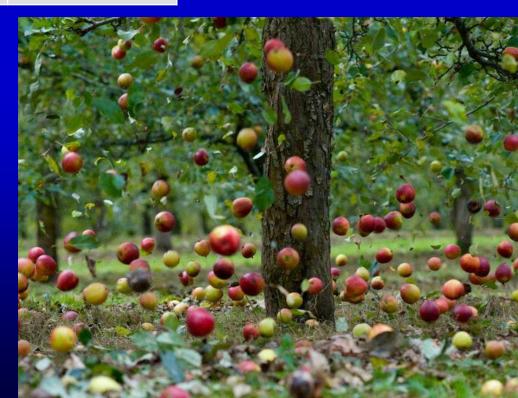
MSC able to "sense" LC several years before CT detection

- Characteristics of early detection biomarkers
- "Predictive" aspect
 - help to improve definitions of populations at risk
- "Diagnostic" aspect
 - help in the DD of screen-detected nodules
- "Prognostic" aspect
 - help in therapy choice for best outcome of screen-detected nodules

Screening and early detection > the false positive problem

NLST	СТ	XR	
Positive result	18,146 (24.2%)	5043 (6.9%)	
False pos result	17,497 (96.4%)	4,764 (94.5%)	
Lung cancer	649 (3.2%)	279 (5.5%)	

Implementation of LD-CT will be like an apple tree in fall

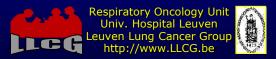


Screening and early detection > the false positive problem

NLST	СТ	XR	
Positive result	18,146 (24.2%)	5043 (6.9%)	
False pos result	17,497 (96.4%)	4,764 (94.5%)	
Lung cancer	649 (3.2%)	279 (5.5%)	

Implementation of LD-CT will be like an apple tree in fall

WE HAVE TO PICK THE RIGHT APPLE



Screening and early detection > reducing false pos: NELSON nodule approach

Table 3 NELSON follow-up protocol for non-calcified nodules at annual repeat screening						
	Year 1	Year 2	Year 3			
Volume Percentage volume change: PVC (%) (solid nodules only)	V ₁	V_2 100 × $(V_2 - V_1)/V_2$	V_3 100 × $(V_3 - V_1)/V_1$			
Growth		PVC < 25%: no; PVC ≥ 25%: yes	PVC < 25%: no; PVC ≥ 25%: yes			
Select lowest VDT (either VDT _v or VDT _d) VDT > 600 days: GROWCAT A VDT 400—600 days: GROWCAT B VDT < 400 days or new solid component in non-solid lesion: GROWCAT C		Annual CT year 4 Annual CT year 3 Refer to pulmonologist	Annual CT year 4 Annual CT year 4 Refer to pulmonologist			

- **▶** In 1st and 2nd round of screening, 2.6% and 1.8% positive test results
- > Yet, in 1st round, sensitivity was 94.6%, NPV 99.9%

Screening and early detection > reducing false positives

Complementary Diagnostic Performance of LDCT and MSC to Reduce False Positives

Increased specificity of identifying subjects without lung cancer

Subjects without lung		MSC		
cancer	TOTAL	High + Intermedi ate	Low	
LDCT Administered	594	116	478	
No nodule	248	49	199	
Nodule diameter ≤ 5 mm	231	45	186	
Nodule diameter > 5 - ≤ 10 mm	94	18	76	
Nodule diameter > 10 mm	21	4	17	

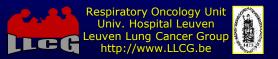
594 subjects in LDCT arm without lung cancer

346/594 subjects or 58% had a nodule detected by LDCT

This was reduced to 11% by MSC

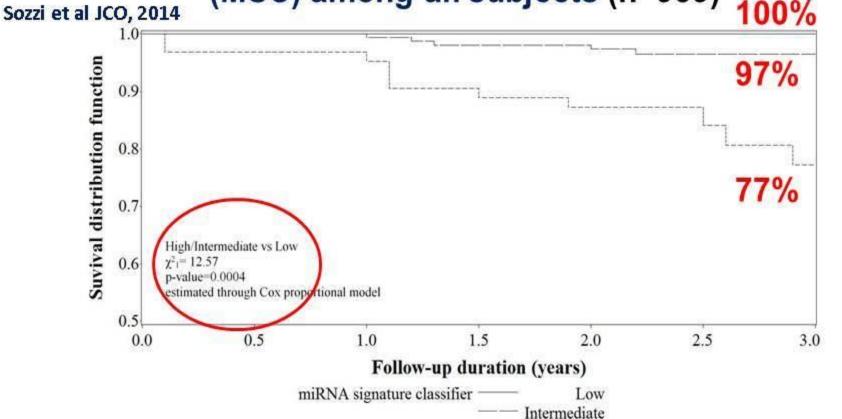
115/594 subjects or 19.4% had a ≥ 5mm nodule which requires clinical action

This was reduced to 3.7% by MSC

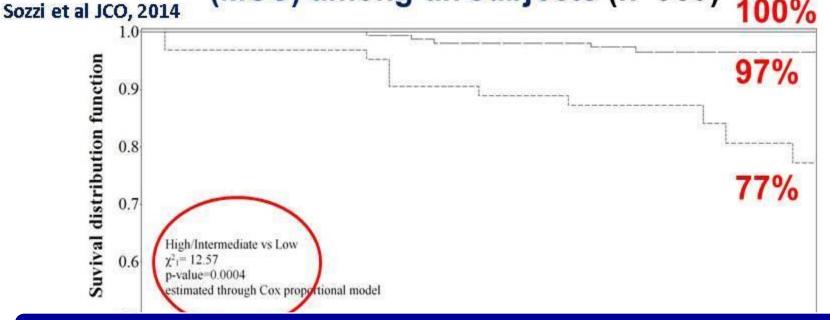

Complementary Diagnostic Performance of LDCT and MSC to Reduce False Positives

Increased specificity of identifying subjects without lung cancer

Subjects without lung		MSC				
cancer	TOTAL	High + Intermedi ate	Low	594 subjects in LDCT arm without lung cance		
	\$ 1.00 E			-		
LDCT Administered	594	116	478	346/594 subjects or 58% had a nodule		
No nodule	248	49	199	detected by LDCT This was reduced to 11% by MSC		
Nodule diameter ≤ 5 mm	231	45	186	This was reduced to 11% by Wisc		
Nodule diameter	04	10	76	115/504 cubiacts or 19.4% had a > 5mm		
> majo				les needing clinical action		
> 10 mm	21	4	1/			


- Characteristics of early detection biomarkers
- "Predictive" aspect
 - help to improve definitions of populations at risk
- "Diagnostic" aspect
 - help in the DD of screen-detected nodules
- "Prognostic" aspect
 - help in therapy choice for best outcome of screen-detected nodules

Screening and early detection > prognosis of screen-detected LC


Three-year survival from date of blood sample collection according to miRNA signature classifier (MSC) among all subjects (n=939)

Screening and early detection > prognosis of screen-detected LC

Three-year survival from date of blood sample collection according to miRNA signature classifier (MSC) among all subjects (n=939)

prognostic classifier may help in adjuvant therapy decisions

- Ideal early detection biomarker
 - permits large-scale screening
 - applicable on easily accessible specimens through noninvasive procedures
 - easy and reproducible quantification
 - high sensitivity and specificity
 - low cost
 - validation

- Ideal early detection biomarker
 - permits large-scale screening
 - applicable on easily accessible specimens through noninvasive procedures
 - easy and reproducible quantification
 - high sensitivity and specificity
 - o low cost ?
 - o validation ±

Screening and early detection > this miRNA work

Opportunities

- modelling ± testing with more refined imaging features
 - o 2D: shape, margins, density of nodule
 - o 3D: growth pattern of nodule
- validation in other cohorts
- prospective demonstration of lowering of false positives, decrease in number-needed-to-screen, and further LC mortality reduction

