SBRT for lung cancer: Boing beyond small inoperable NSCLC

Krzysztof Konopa Medical University of Gdańsk

Early stage lung cancer:

- Surgical resection standard of care for patients who are candidates for lobectomy.
- >20% of patients cannot tolerate surgery because of comorbidities.
- >30% of patients do not have surgery in US community practice.
- Some patients with high surgical risk are not candidates for lobectomy but could tolerate more limited resection.

3 main populations of early lung cancer pts:

- Standard risk surgical candidates
- High risk surgical candidates
- Medically inoperable

Inoperable patients - prospective studies

Nordic Study Group – phase II, 57 patients

Baumann et al. JCO 2009

Inoperable patients - prospective studies

RTOG 0236 – phase II, 55 patients

Inoperable patients - prospective studies

JCOG 0403 (medicaly inoperable arm)

- Phase II staratified: 100 pts eligible
- Stge IA; 48Gy in 4 fractions
- OS 59,9%@3y (90% CI: 51,4%-67,5%)
- Local Control rate 88%@3y

Netherlands Cancer Registry 2003 - 2009

Netherlands Cancer Registry 2003 - 2009

Haasbeek et al. Ann Oncol 2012

SBRT is standard of care for medically inoperable early stage NSCLC

What about high risk/operable early stage NSCLC?

SBRT vs wedge resection – retrospective series

Grills et al. JCO 2010

SBRT vs surgery – population-based matchedpair comparison

Surgery vs SBRT patterns of failure—retrospective analysis

Surgery vs SBRT patterns of failure – retrospective analysis

SBRT vs surgery – matched-pair and propensity score comparison

SBRT vs surgery – matched-pair comparison and propensity score comparison

SBRT vs surgery – retrospective propensity-score matched comparison

SBRT vs surgery – retrospective analysis

SBRT for potentialy operable patients – retrospective analysis

SEER-Medicare retrospective analysis

n=10923 Age <u>></u>66y Stage 1

SEER-Medicare retrospective analysis

Shrivani et al. IJROBP 2012

SEER-Medicare retrospective analysis

SBRT vs surgery for operable pts – prospective trials

STARS phase III (MDACC/international)

- Standard risk operable, <4cm size
- CyberKnife SBRT vs lobectomy

ROSEL phase III (Netherlands)

- Operable, peripheral location, <3cm size
- SBRT vs lobectomy

ACOSOG Z 4099/RTOG 1021 phase III (USA)

- High risk operable, peripheral location, <3cm
- SBRT vs sublobar resection

SBRT efficacy summary:

- Consistent outcomes across series, including prospective cooperative trials:
 - Tumor control >85-90%@3y
 - OS 50-60%@3y for medically inoperable pts
 - OS 76%@3y for operable patients (JCOG0403)

 SBRT is comparable to surgery in non randomized comparisons – good options for high-risk/elderly patients

What about incomplete/clinical staging without surgery?

Patern of relapse after SBRT:

Patterns of failure according to tumor size in selected studies.

	Tumor size (cm)	% >T1	Total dose/# fractions	$\begin{array}{c} BED_{iso} \\ (Gy_{10}) \end{array}$	$BED_{periphery}$ (Gy_{10})	% Local failure	% Regional failure	% Distant failure
Baumann et al. [29]	≤9 Median 3.7	60	30-45 Gy/3-4	112.5- 219.4	60-112.5	T1: 3 T2: 13, p < 0.05 Increased local, regional, and distant recurrence in T2 tumors noted	<5	25
Baumann et al. [30]	≤5 Median 2.5	30	45 Gy/3	219.4	112.5	4 Local failures, all T2; 3 yr estimated failures (local, regional, and distant mets), p = 0.02: T1: 18 T2: 41	5	16; 24 at 3 yrs
Koto et al. [33]	≤ 5	38.7	45-60 Gy/3-8	105–112.5	90.5-95.2	T1: 22.1 T2: 60	6.5	19.4
Nagata et al. [34]	≼ 4	28.9	48 Gy/4	105.6	n/a	T1: 3 T2: 0	T1: 9.4 T2: 0	T1: 15.6 T2: 30.8
Onishi et al. [36]	≤5.8 Median 2.8	36.2	30-84 Gy/1-14	57.6–180	n/a	T2 > T1, p < 0.05	11.3	19.8
Takeda et al. [38]	n/a	39.7	50 Gy/5	140.6	100	T1: 7 T2: 4, p = ns	T1 vs. T2, $p = ns$	T1 vs. T2, $p = ns$
Chang et al. [41]	<4	n/a	40 Gy/4	105.6	80	T2: 2/3 failures in 7 patients who received 40 Gy/4	7.7	15.4
Hata et al. [45]	≤4.2 Median 2.5	47.6	50-60 Gy/10	86.3-111	75–96	T1: 0 T2: 10	0	19
Hof et al. [46]	≤ 5	59.5	19-30 Gy/1	55.1–120	38.3-81.6	<12 cm ³ : 0 ≥12 cm ³ : 20 p = 0.078	9.5	31
Lagerwaard et al. [48]	≤ 6	41	60 Gy/8	145.3	105	T1:1.6 T2: 5.5, p = ns	T1 < T2, $p = 0.04$	T1 < T2, $p = 0.04$
Le et al. [49]	≤6.2 Median 3.9	70	15-30 Gy/1	64.3-215.6	37.5–120	T1: 0% T2: >20 Gy: 17% <20 Gy: 49%	Regional + DM: 4	ָס (
Onishi et al. [53]	≤ 6	57.1	60 Gy/10	125.3	96	6 overall (2 pts); all T2	4/5 Regional + distant mets (14%): T2	
Van der Voort van Zyp et al. [60]	≤10 Median 2.7	44.3	60 Gy/3	277.1	180	T1: 0 T2: 11, <i>p</i> = 0.085	11	17
Inoue et al. [61]	≼4.5	19.1	30-70 Gy/2-10	75–119	n/a	≤2 cm: 3.4 >2 cm: 5.3	≤2 cm: 5.2 >2 cm: 10.5	≤2 cm: 10.3 >2 cm: 17.5
Guckenberger et al. [62]	<5	68.3	26-48 Gy/1-8	138.1- 168.9	76.8–93.6	All failures from primary NSCLC are ≥T2	All T2	T1: 16.7 T2: 42.1 T3: 88.9
Onimaru et al. [63]	≤7 Median 2.7	39.0	40-48 Gy/4	80–105.6	57.6–75.3	T2 > T1, p = 0.0373 T2: 40 Gy > 48 Gy, p = 0.0015	n/a	n/a

SBRT for large tumors

Large tumors – retrospective analysis

Stage T2-T4 LFFS@2y=75% OS@2y=57%

Large tumors – retrospective analysis

Fig. 3. Scatterplot of tumor size and local (A) and any (B) recurrences for all regimens.

n=185 Stage I, inoperable

Large tumors – retrospective analysis

Symptomatic Pneumonitis

Ong et al. Radioth Oncol 2010

Risk of symptomatic pmeumonitis after SBRT for large tumors

SBRT for large tumors - summary

- Effective local therapy
- Higher risk of distant failures
- Higher risk of symptomatic pneumonitis

More data needed!