

Poster Discussion 1

74 PD 82 PD 3 PD 4 PD

Lukas Bubendorf Pathology

- Universitätsspital Basel

Disclosure

Receipt of grants: Roche

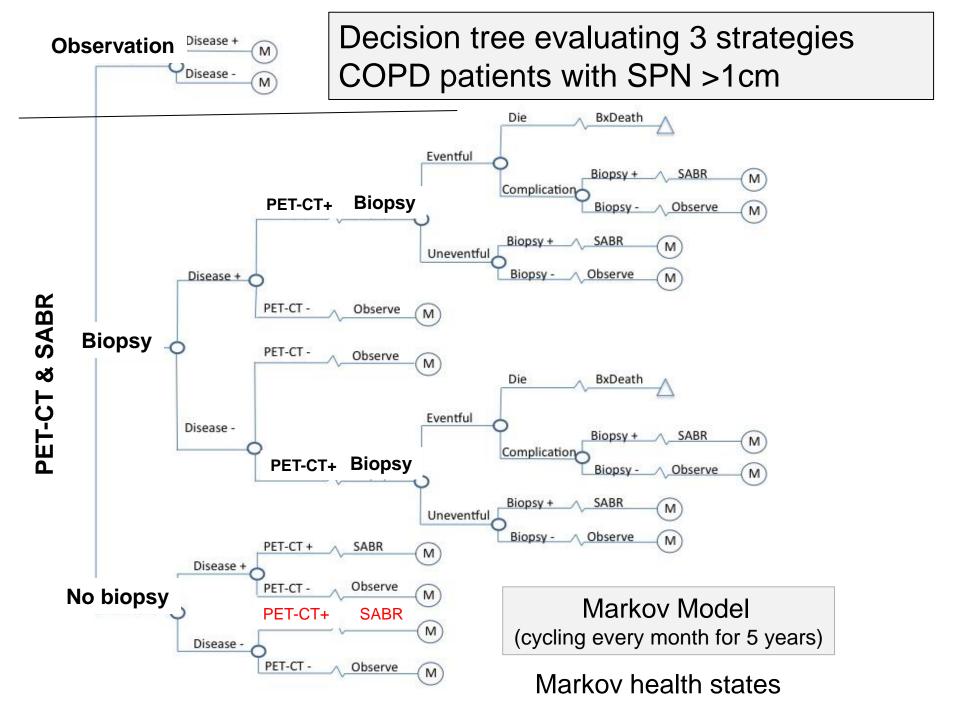
Receipt of honoraria / consultation fees: *Roche, Pfizer, Abbott, Boehringer Ingelheim*

Stock shareholder: Roche, Novartis

When is a pathological diagnosis preferred before stereotactic ablative radiotherapy for stage I lung cancer? A decision analysis

> Alexander V. Louie, MD, FRCPC European Lung Cancer Conference March 2014

Background


- Stereotactic ablative radiotherapy (SABR) for a suspicious SPN without pathology is acceptable in unfit patients after review in multidisciplinary tumor board
- Appropriate lung cancer prevalence / probability threshold justifying this strategy?
 → Decision analysis

Methods


Three strategies

- 1. Observation
- 2. SABR without pathologic confirmation
- 3. Transthoracic BX prior to SABR
- ...at different lung cancer prevalences
- Diagnostic test performance: literature
- Toxicity & recurrence data: database of 382 pts treated with SABR
- → Decision tree & Markov model
- \rightarrow Predict prevalence thresholds
- \rightarrow Quality adjusted life years (QALYs)

MODEL PARAMETERS	SOURCE			
PET-CT sensitivity and specificity	ACCPGuidelines, Gould, Chest 2013			
Biopsy sensitivity and specificity	Meta-analysis, Cronin, adiology 2008			
Biopsy-related toxicity	Wiener, Annals of Internal Medicine 2011			
Biopsy-related death	Gould, Annals of Internal Medicine 2003			
Patterns of recurrence following SABR	VUMC database - individual patient data			
Death following recurrence	Meta-analysis, Group NM-AC JCO 2010			
Death from other causes	US standard life tables 2008, www.cdc.gov			
SABR toxicity	VUMC database – individual patient data			
Treatment-related death from SABR	Meta-analysis, Grutters, Radiot Oncol 2010			
LR, RR, DM utilities	Meta-analysis, Sturza, Med Decis Making 2010			
SABR and biopsy toxicities utilities	Doyle, <i>Lung Cancer</i> 2008			
Utility after SABR	Mapping of VUMC individual QoL database			

LC prevalence of 65% \rightarrow QUALYs: 2.09 – 2.64 – 2.56

Comments

74 PD

- Help in evidence based decision making in unfit patients
- Complexity by multiple factors → statistical exercise in a dynamic field
- Translating the study results to individual unfit patients with variable degrees of unfitness is difficult

European Harmonization Study for the immunohistochemical detection of ALKrearranged NSCLC (on behalf of all 16 participating institutes enrolled in the study)

European Harmonization Study for the immunohistochemical detection of ALK-rearranged NSCLC (on behalf of all 16 participating institutes enrolled in the study)

Conflict of interest

(Multi-Centre Immunohistochemical ALK-Testing of Non-Small Cell Lung Cancer Shows High Concordance After Harmonization of Techniques and Interpretation Criteria)

Maximilian von Laffert¹, Arne Warth², Roland Penzel², Peter Schirmacher², Keith M. Kerr³, Göran Elmberger⁴, Hans-Ulrich Schildhaus⁵, Reinhard Büttner⁵, Fernando Lopez-Rios⁶, Simone Reu⁷, Thomas Kirchner⁷, Patrick Pauwels⁸, Katja Specht⁹, Enken Drecoll⁹, Heinz Höfler⁹, Daniela Aust¹⁰, Gustavo Baretton¹⁰, Lukas Bubendorf¹¹, Sonja Stallmann¹², Annette Fisseler-Eckhoff¹², Alex Soltermann¹³, Verena Tischler¹³, Holger Moch¹³, Frederique Penault-Llorca¹⁴, Hendrik Hager¹⁵, Frank Schäper¹⁶, Dido Lenze¹, Michael Hummel¹ and Manfred Dietel¹

•16 Institutes, 8 countries

•<u>Harmonization:</u> webinar instruments, observer training

- •TMA-based ALK-testing
- IHC only (Ventana ALK-D5F3 Optiview)
- binary interpretation (pos. vs. neg.)
- •15 samples (FISH, PCR validated):
- •7 unequivocally ALK-FISH-neg.
- •6 unequivocally ALK-FISH-pos.
- •2 <u>"borderline"</u> samples ("BL") (RT-PCR:EML4-variants 1 and 3a/b)!!!

Supported by Ventana / Roche

ALK IHC in 8 ALK positive NSCLC

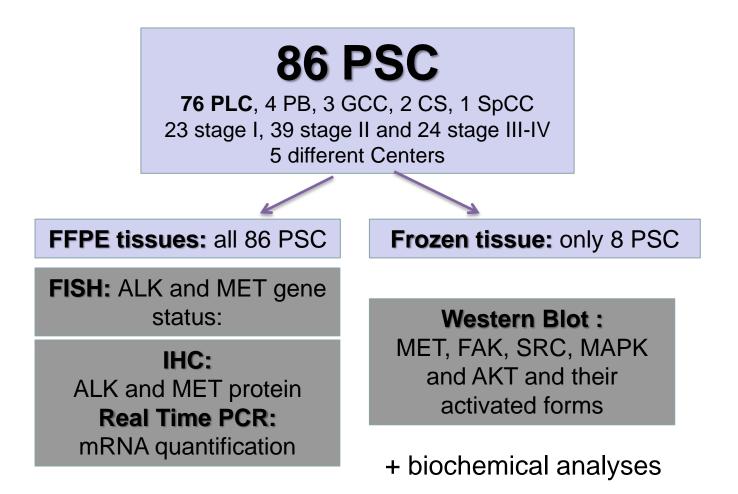
Participant	case 1	case 3	case 6 (BL**)	case 8	case 10 (BL**)	case 11	case 14	case 15
Berlin/Charité, Germany								
Wiesbaden, Germany				FISH		FISH		
Köln, Germany								
Basel, Switzerland								
Aberdeen, United Kindom						FISH*		
Stockholm, Sweden						FISH/PCR		
Madrid, Spain								
Clermont-Ferrand, France				FISH*				
Dresden, Germany						FISH*		
Munich LMU, Germany								
Munich TU, Germany								
Zurich, Switzerland						FISH*		
Edegem, Belgium								
Århus, Denmark								
Berlin/Buch, Germany						FISH*		
Heidelberg, Germany						FISH		
negative	posi	itive						

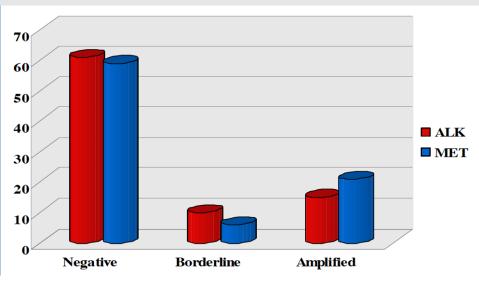
All 7 ALK-FISH-negative cases homogenously scored negative by IHC

82 PD Comments

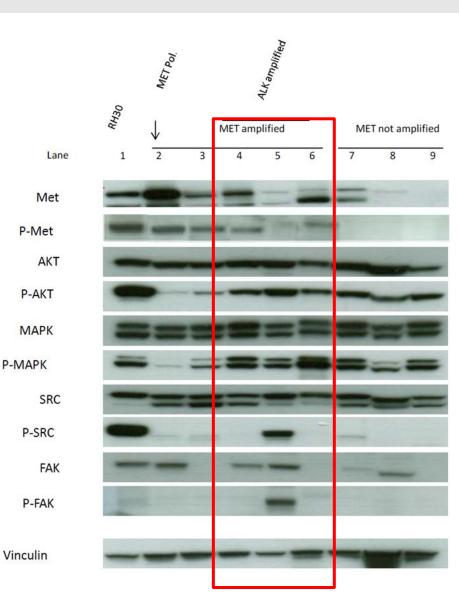
- Ventana ALK Assay: well standardized & robust (harmonization of technique & scoring)
- Not addressed:
 - Pre-analytical variability
 - Other platforms & antibodies (Leica, DAKO)
- Difficult cases exist
- IHC & FISH (ideal world)
- Unequivocal ALK IHC could replace FISH

ALK and MET are Synergistic Co-Activators of Downstream Signals by Amplification in Pulmonary Sarcomatoid Carcinoma: A Potential Target for Therapy?

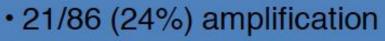

Patrizia Gasparini, Gabriella Sozzi, Valentina Ciravolo, Serenella Pupa, Elena Tamborini, Roberto Caserini, Ugo Pastorino, Giuseppe Pelosi

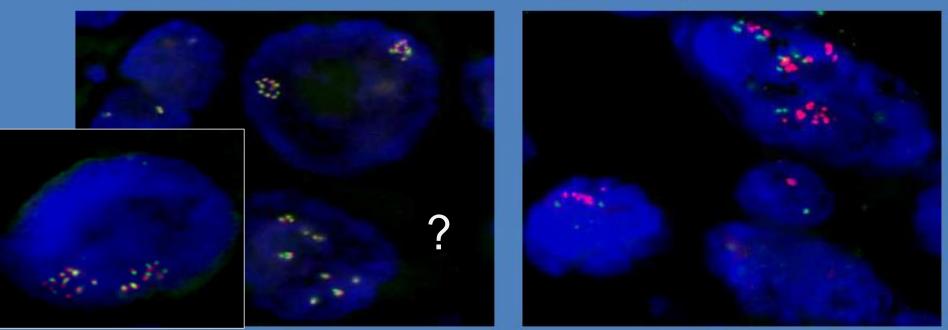

Sarcomatoid carcinoma

- Sarcoma-like differentiation (pleomorphic, spindle cell, giant cell, carcinosarcoma, blastoma)
- Characterized by EMT
- Poor prognosis
- Predictive alterations anecdotal
- Targeting EMT as a therapeutic option?
- ALK not re-arranged but "amplified" in 20%
- Scant data on MET


- Prevalence of ALK and MET alterations?
- Functional relationship between ALK & MET?
- Therapeutic targes in PSC

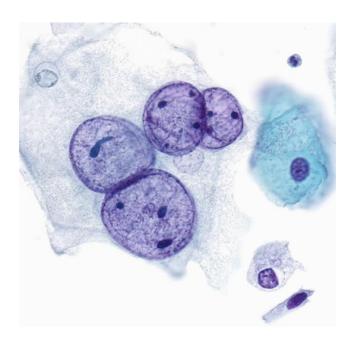
Results

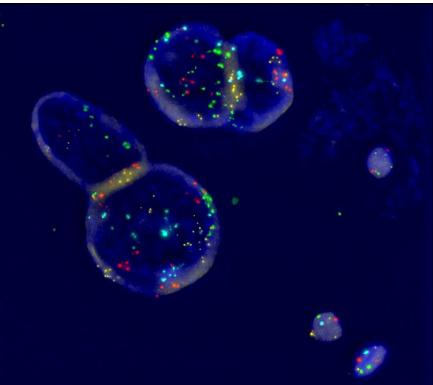

- 18% co-amplification
- Co-amplification α with downstream signal activation (p-SRC & p-FAK) involved in invasion / EMT

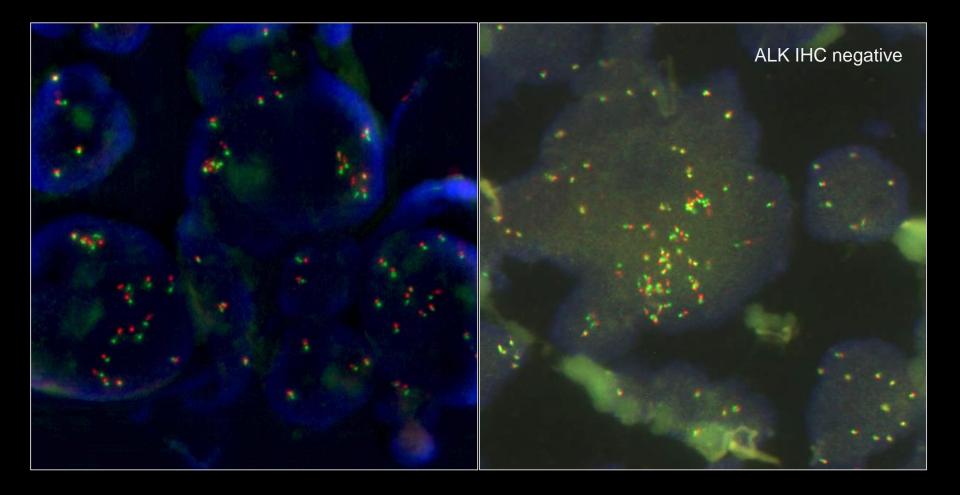

ALK

MET

- No translocation
- 15/86 (17%) amplification
- 10/86 (12%) borderline

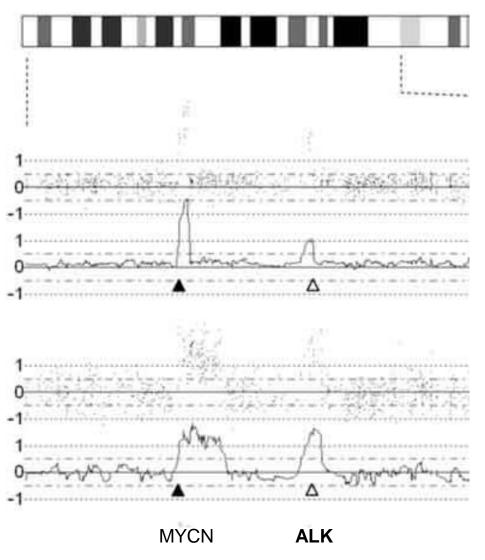

• 6/86 (7%) borderline




Amplified: > 15 signals of the gene or presence of clusters in >10% of tumor cells. Borderline: > 15 signals of the gene or presence of clusters in 5-10% of tumor cells. Negative: > 15 signals of the gene or presence of clusters in <5% of tumor cells, or presence of clusters in <5% of tumor cells, or presence of clusters in <5% of tumor cells.

74 PD "Amplification issue"

- "Amplification" is not well defined
- Polyploidy due to endo-replication is often interpreted as amplification but does not select for specific genes



High ALK gene copy number

ALK amplification in Neuroblastoma Chr 2

Caren H et al, Biochem J 2008,416:153

aCGH and NGS data from public databases (NSCLC):

True ALK amplification: 1/>500 NSCLC

Comments

- Interesting hypothesis: synergistic action of ALK and MET in sarcomatoid lung cancer converging to EMT related downstream signaling (p-SRC & p-FAK)
- Limitations:

74 PD

- "amplification issue"
- No statistical analysis (low number of cases)
- Associations could be circumstantial

The prognostic effect of IASLC/ATS/ERS classification of lung adenocarcinoma on postrecurrence survival in resected adenocarcinoma

- Jung-Jyh Hung,¹ Teh-Ying Chou,² Yu-Chung Wu,¹
- and Wen-Hu Hsu¹
 ¹Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
 ²Institute of Clinical Medicine, National Yang-Ming University, and Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan

Objective:

Prognostic factors of PRS in resected lung adenocarcinoma after recurrence.

Methods:

Clinicopathological characteristics of 140 patients

Results:

Independent predictors of worse PRS :

- N2 status (*P* = 0.036),
- Micropapillary/solid predominant pattern (P = 0.018)
- No treatment for recurrence (P < 0.001)

but not stage (I& II vs. III) and liver metastases

Comments

- Importance of histological pattern (micropapillary / solid) confirmed
- Limitations:
 - ECOG performance status?
 - Time from resection to recurrence?
 - Number of recurrent organs?
 - EGFR / KRAS status?