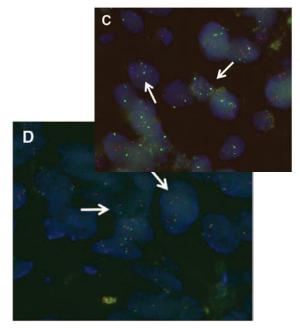


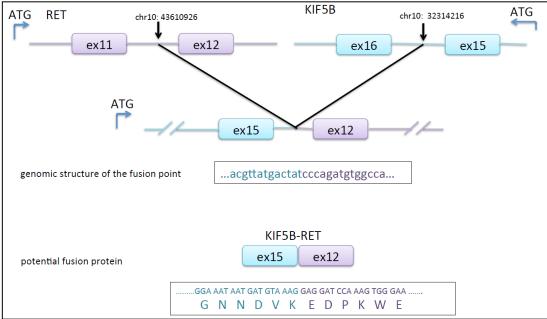
Lung adenocarcinoma with RET fusion: early experience with diagnosis and targeted therapy

Gautschi O, Pall G, Schultheis A, Aebersold F, Gardizi M, Heuckmann J, Merkelbach-Bruse S, Wolf J, Diebold J, Heukamp LC.

From the University of Köln (DE), University of Innsbruck (AT), Cantonal Hospital Luzern (CH), and Blackfield AG Köln (DE).


Objectives

- Incidence of RET fusion in routine diagnostics
- Preliminary experience with targeted therapy in the absence of a clinical trial
- Decision-making about specific prospective trials in the near future

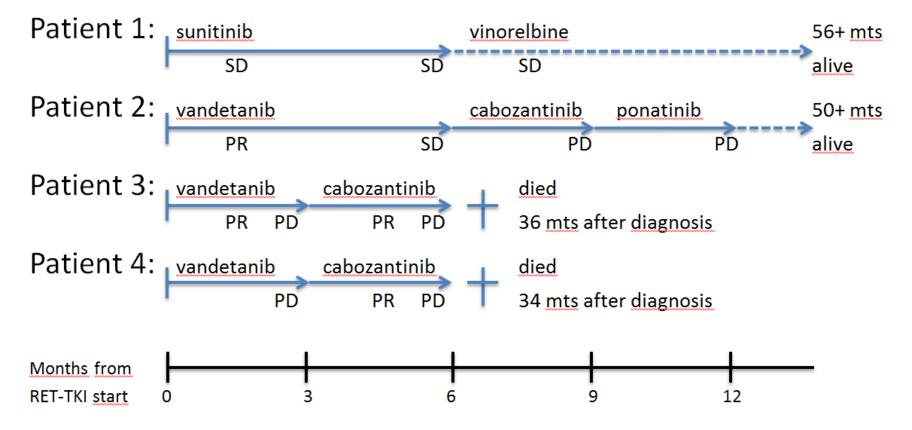


FISH and CAGE®

KIF5B (C) and RET (D) FISH Joachim Diebold JTO 2013

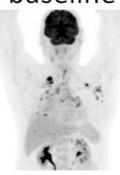
CAGE® technology by Backfield AG Frauke Leenders and Roman Thomas Dept. of Translational Genomics, Cologne University

Organisers


Count	Age	Gender	Smoking status	TNM at initial diagnosis	RET FISH+ cells	Fusion partner	Lines of CTX and RET inhibitors
1	69	F	Never	T1N2M0	49%	KIF5B	1/1
2	62	М	Never	T1N2M0	87%	KIF5B	2/3
3	63	М	Former	M1 (BRA)	47%	Unknown	3/2
4	72	М	Never	M1 (ADR)	77%	KIF5B	2/2
5	62	F	-	-	100%	KIF5B	-/-
6	-	-	-	-	26%	KIF5B	-/-
7	37	М	-	-	23%	KIF5B	-/-
8	69	М	-	-	87%	KIF5B	-/-
9	48	F	-	-	23%	KIF5B	-/-
10	79	М	-	-	25%	KIF5B	-/-
11	47	М	-	-	22%	KIF5B	-/-
12	70	М	-	-	22%	Unknown	-/-
13	53	F	Never	T1N2M0	65%	KIF5B	-/-
14	76	М	30 py	M1A (PLE)	87%	TBD	-/-
15	77	М	40 py	M1A (PLE)	27%	TBD	-/-
16	53	F	20 py	T1N0M0	34%	TBD	-/-
17	46	М	35 py	M1B (OSS)	18%	TBD	-/-

abstract

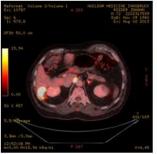
Patients with targeted therapy

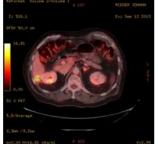


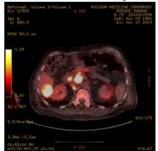
FDG-PET responders

Patient 3: baseline vandetanib baseline cabozantinib









Patient 4: baseline vandetanib cabozantinib follow-up

Conclusions

- RET fusion was detectable in routine diagnostics.
- New technologies are needed for high-throughput testing of multiple fusion genes.
- No secondary RET mutations identified so far.
- Chemotherapy remains the standard of care.
- Preliminary activity of targeted therapy was observed and prospective studies are ongoing.

Global Phase II Trial XL184-212

Acknowledgment

- Patients for consent to this presentation
- Y. Hummel, T. Zander and M. Frueh for collaboration
- Astrid Hirschmann (Luzern) for FISH
- R. Thomas and F. Leenders (Dept. of Transl. Genomics, Köln) for CAGE® analysis
- Exelixis and SOBI for compassionate use drug supply for individual patients and for study flow chart
- S. Aebi for comments

