GU cancer: metastatic CRPC

Early clinical trial unit

Dr Christophe Massard

ESMO Symposium on Signalling Pathways in Cancer Targeting the PI3K/AKT/mTor pathway in cancer Sitges-Barcelona, 28 February - 1 March 2014

Disclosure

Participation to advisory boards, speaker or investigator for:

Amgen, Astellas, Astra Zeneca, Bayer, Celgene, Genentech, Ipsen, Jansen, Lilly, Novartis, Pfizer, Roche, Sanofi-Aventis

Lost in translation...

- CRPC in 2014
- Molecular alterations and CRPC
- Clinical trials and PI3K/AKT/mTOR inhibitors in CRPC

• CRPC in 2014

– A new paradigm for our patients!

- Molecular alterations and CRPC
- Clinical trials and PI3K/AKT/mTOR inhibitors in CRPC

Advanced prostate cancer: Natural history (in the 2000s)

Metastatic Hormone-Sensitive prostate cancer

Old Paradigm

- "Prostate cancer is chemo-resistant."
- "Prostate cancer is hormone-sensitive for about 2 years, and when progression occurs while on hormones, this defines hormonerefractory prostate cancer (HRPC)."
- "When hormone-refractory status is reached, survival is about 1 year."
- "bone mets are not an issue."

... Good news from the last 5 years!

A new paradigm in CRPC

- "Prostate cancer is chemo-resistant."
- "Prostate cancer is hormone-sensitive for about 2 years... when progression occurs while on hormones, this defines hormonerefractory prostate cancer (HRPC)."
- "When hormone-refractory status is reached, survival is about 1 year."
- "bone mets are not an issue."

Castration-resistant prostate cancer: a new paradigm

- "Castration-resistant prostate cancer" (CRPC) was proposed by the PCWG2 as an alternative term to describe patients for whom hormone therapy has failed and who have progressive disease despite castration levels of androgen
- Despite castration levels of androgen, the androgen receptor (AR) signalling pathway remains active
 - Several pathways are thought to be involved in disease pathogenesis
 - Potential targets

PCWG2 = Prostate Cancer Clinical Trials Working Group 2. Bonkhoff H, et al. Prostate. 2010;70:100-12. Fizazi K, et al. Eur J Cancer. 2009;45 Suppl 1:379. Locke JA, et al. Cancer Res. 2008;68:6407.

Androgen Receptor is a key driver in mCRPC

GUSTAVE/ ROUSSY-GRAND PARIS // Androgen Receptor is a key driver in mCRPC

Evolution? ...

- CRPC in 2014
- Molecular alterations and CRPC – AR pathway and PI3K/AKT/mTOR
- Clinical trials and PI3K/AKT/mTOR inhibitors in CRPC

www.nature.com/clinicalpractice/uro

Please cite this article in press as: Taylor et al., Integrative Genomic Profiling of Human Prostate Cancer, Cancer Cell (2010), doi:10.1016/ j.ccr.2010.05.026

Cancer Cell Article

Integrative Genomic Profiling of Human Prostate Cancer

Barry S. Taylor,^{1,8} Nikolaus Schultz,^{1,8} Haley Hieronymus,^{2,8} Anuradha Gopalan,³ Yonghong Xiao,³ Brett S. Carver,⁴ Vivek K. Arora,² Poorvi Kaushik,¹ Ethan Cerami,¹ Boris Reva,¹ Yevgeniy Antipin,¹ Nicholas Mitsiades,⁵ Thomas Landers,² Igor Dolgalev,² John E. Major,⁶ Manda Wilson,⁶ Nicholas D. Socci,⁶ Alex E. Lash,⁶ Adriana Heguy,² James A. Eastham,⁴ Howard I. Scher,⁵ Victor E. Reuter,³ Peter T. Scardino,⁴ Chris Sander,¹ Charles L. Sawyers,^{2,7,*} and William L. Gerald^{2,3,9}

Taylor et al, Cancer Cell 2010

Genes and pathways dysregulation in prostate cancer

frequency	percent of cases (%)					
Prim. Mets gene also mutated	inactivated	100	0	100	activated	

Taylor et al, Cancer Cell 2010

PI3K-AKT-mTOR and prostate cancer

Courtney et al, JCO 2010

TMPRSS2-ERG and PTEN loss

Squire, Nat Genetics 2009; Kings et al, 2009; Carver et al, 2009

 British Journal of Cancer (2010), 1–7

 © 2010 Cancer Research UK
 All rights reserved 0007–0920/10
 \$32.00

 www.bjcancer.com
 \$32.00

npg

Full Paper

Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer

PTEN loss and ERG/ETV1 gene rearrangements and prognosis of prostate cancer patients

Reid et al, BJC 2010

PI3K/AKT/mTOR and AR pathways

Inhibition of the PI3K pathway restores, in part, androgen responsive signaling in *PTEN* loss prostate cancers

Carver et al, Cancer cell 2011

- CRPC in 2014
- Molecular alterations and CRPC
- Clinical trials and PI3K/AKT/mTOR inhibitors in CRPC
 - From phase I/II to molecular medicine

PTEN/Akt Pathway Cooperates with Androgen Receptor Signaling

Reciprocal feedback between AR and PI3K/AKT

Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer

Cancer Cell 19, 575-586, May 17, 2011

Note: ~60% of CRPC exhibit PTEN low/loss

Combination effects between GDC-0068 and anti-androgen across prostate mouse models

Randomized, double-blind, placebo-controlled Ph II study (GDC-0068 + Abiraterone)

*Abiraterone (1000mg) and prednisone/prednisolone (5mg BID) Assignment to the 200 mg/placebo or 400mg/placebo group is known, treatment is blinded

Courtesy Premal Patel

PI3K Pathway Inhibition Novartis compounds

- BEZ235
 - PI3K (pan-class I)
 - mTOR (mTORC1 & mTORC2)
- BKM120
 - PI3K (pan-class I)
- RAD001 (Afinitor)mTOR (mTORC1 only)

mTORC1 = mTOR complex 1 mTORC2 = mTOR complex 2

Courtesy C Massacesi and L Trandafir

PI3Ki patwhay in Prostate Cancer Rationale to study BEZ235 and BKM120 in prostate cancer

- Frequent PI3K pathway alterations (mainly PTEN loss in ~70–80% of CRPC)
- Interaction and reciprocal feedback regulation between AR and PI3K signaling pathway with potential involvement in treatment resistance^{1,2}

Combination of MDV3100 + BEZ235 causes near-complete tumor regressions in *PTEN*-deficient mouse model and in human prostate cancer xenografts¹

pulsar

BEZ235D2101 Phase Ib in CRPC patients after Abiraterone failure

Prostate cancer Phase Ib study design

Choosing among available options??

Time for personalized treatment in CRPC?

« The right treatment for the right patient »

- Can we predict the following:
 - 1- Who benefits from chemotherapy?
 - 2- Who may respond to subsequent endocrine manipulations (CYP17 inh, MDV 3100)?
 - 3- Are taxanes and CYP17 inh cross-resistant?
 - 4- Which patient benefit from Alpharadin?
 - 5-What is a prostate cancer?

Time for personalized treatment in CRPC?

« The right treatment for the right patient »

- Can we predict the following:
 - 1- Who benefits from chemotherapy?
 - 2- Who may respond to subsequent endocrine manipulations (CYP17 inh, MDV 3100)?
 - 3- Are taxanes and CYP17 inh cross-resistant?
 - 4- Which patient benefit from Alpharadin?
 - 5-What is a prostate cancer?

An elegant but complex way to identify patients who benefit from CYP17 inh

Success stories of Personalized Medicine

What is Prostate Cancer ? An Old view

The same treatment for everybody? For different disease?

Pathology-based therapy cytotoxic

Molecular classification and Target-oriented therapy

Pathology-based therapy cytotoxic

Pim Kinase

P53

Courtesy to Dr Besse

Molecular classification and Target-oriented therapy

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 9, 2009

VOL. 361 NO. 2

Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers

Synthetic lethal concept

Ashworth A, JCO 2008; Fong et al, NEJM 2009

Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study

Sameek Roychowdhury, *et al. Sci Transl Med* **3**, 111ra121 (2011); DOI: 10.1126/scitranslmed.3003161

C Tumor	B	Day 1		Diamaria	Age	Devices thereafter	C	Potential pathways for	Examples of approved or investigational agents	
ыорзу			NO	Diagnosis	(years)	Previous therapies	Sequence results	therapeutic intervention		
	ž.	Day 2	1	Metastatic castrate-resistant prostate cancer	67	Leuprolide + bicalutamide	PTEN deletion	PI3K inhibitors	BEZ235, GDC-0941, XL147	
Pathology						Diethylstilbestrol	AR amplification	Androgen signaling	Abiraterone, MDV3100	
Camala		Day 3-9				NY-ESO vaccine study	TMPRSS2-ERG rearrangement	PARP inhibitors	Olaparib, BSI-201, ABT-888	
prep						Azacytidine + valproic acid study	CPNE4-NEK11 rearrangement	(NIMA kinases?)	??	
							TP53 mutation			
Sequencing		Day 10-18	2	Metastatic	61 Ser	Hormone naïve (newly diagnosed)	PTEN deletion	PI3K inhibitors	BEZ235, GDC-0941, XL147	
				prostate cancer			TMPRSS2-ERG rearrangement	PARP inhibitors (UMich trial)	Olaparib, BSI-201, ABT-888	
Analysis		Day 19-22					PLK1 outlier expression	Polo kinase inhibitors	BI2536, GSK461364A, ON-01910	
							TP53 mutation			
Comunica	-	Day 23	3	Metastatic colorectal cancer	46	FOLFOX + cetuximab	NRAS mutation	BRAF and MEK inhibitors	PLX4032, GSK2118436, AZD6244	
tumor board						lrinotecan + cetuximab phase 1: TAK-901	CDK8 amplification	PI3K inhibitors	BEZ235, GDC-0941, XL147	
								CDK inhibitors	Flavopiridol, PD0332991	
1		Day 24-26	4	Metastatic melanoma	48	Multiple surgical resections	HRAS mutation	BRAF and MEK inhibitors	PLX4032, GSK2118436, AZD6244	
Validation							CDKN2C rearrangement	PI3K inhibitors	BEZ235, GDC-0941, XL147	
2								CDK inhibitors	Flavopiridol, PD0332991	
Results		Day 27-30								

Molecular classification and Target-oriented therapy

CRPC pts with bone and lymhp nodes mets previsouly treated with docetaxel chemotherapy **Amp FGFR1, MYC, AR and PTEN loss Proposition: PTEN loss oriented P1 trial ... and then?**

CRPC pts with bone and lymhp nodes mets previsouly treated with docetaxel chemotherapy Amp FGFR1, MYC, AR and PTEN loss Proposition: PTEN loss oriented P1 trial ... and then?

Take-Home Messages

- Prostate cancer is as chemosensitive as other major epithelial cancers
- Prostate cancer is usually still androgen-driven at the castration-resistant stage
- Its unique capacity to generate bone mets should be used to better tailor therapy
- The long delay before symptomatic progression makes CaP an ideal candidate for vaccine approaches
- Inhibition of PI3K/AKT/mTOR is very promising
- Need to move toward personalized « molecular » oncology in CRPC

Steering Committee

✓ Jean-Charles Soria (PI)

- ✓ Fabrice André
- ✓ Gilles Vassal
- ✓ Alexander Eggermont

Investigators

✓ Antoine Hollebecque
 ✓ Rastislav Bahleda
 ✓ Eric Angevin
 ✓ Andreea Varga
 ✓ Anas Gazzah
 ✓ Eric Deutsch

Radiologists

✓ Thierry de Baere✓ Frédéric Deschamps

Pathologists

✓ Philippe Vielh✓ Cécile Charpy

Aknowledgements

Statistics

✓ Marie-Cécile Le Deley✓ Dorota Gajda✓ Aljosa Celebic

Study Coordinator

✓ Maud Ngo-Camus

✓ Fanny Wunder
✓ Aurélie Abou Lovergne
✓ Ana Lalanne

<u>Biologists</u>

✓ Ludovic Lacroix
✓ Nathalie Auger
✓ Valérie Koubi-Pick
✓ Vladimir Lazar
✓ Catherine Richon
✓ Clément Mazoyer
✓ Bastien Job

Funded by

✓ Philantropy and French Grants

- And Industrial partnerships
 - SANOFI-AVENTIS
 - Genentech

Thank you...

Thank you...and discussion

