Clinical development of PI3K/AKT/mTOR inhibitors: Toxicity and Metabolic Aspects

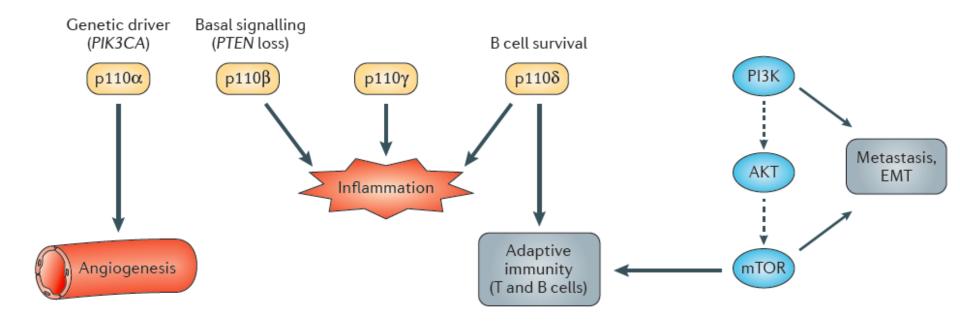
ESMO Symposium on Signalling Pathways in Cancer Targeting the PI3K/AKT/mTor pathway in cancer

Philippe Bedard, MD FRCP(C)

Princess Margaret Cancer Centre - University Health Network Division of Medical Oncology & Hematology Bras Drug Development Program

Disclosures

- Research Funding
 - AstraZeneca, BMS, Genentech/Roche, GlaxoSmithKline, Novartis, Sanofi, Servier
- Honoraria/Consultancy (to research account)
 - Novartis, Roche, Sanofi



Learning Objectives

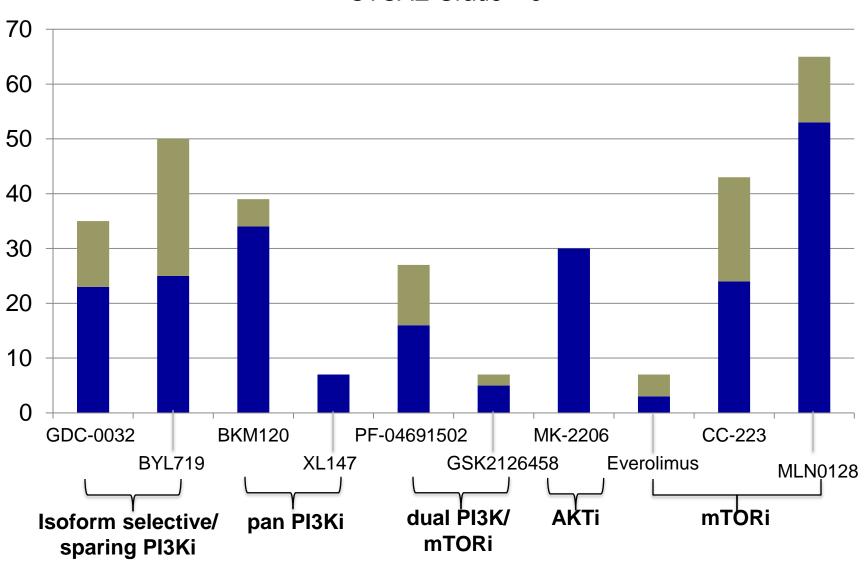
- To provide an overview of toxicities of PI3K-AKTmTOR signalling pathway
- To differentiate toxicity profiles by class of PI3K-AKT-mTOR inhibitor
- To describe biological basis for metabolic and non-metabolic toxicities observed

Level of Pathway Inhibition and Selectivity Influences Toxicity Profiles

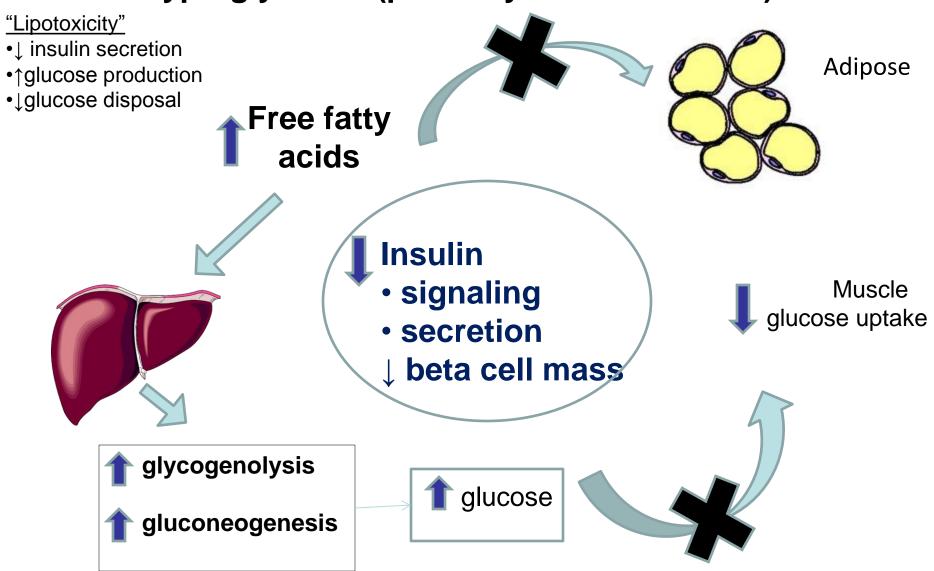
Dose-limiting Toxicities of PI3K-mTOR, pan-PI3K, and isoform specific/sparing PI3K inhibitors

Target	Agents	DLTs		
PI3K-mTOR	GSK2126458 GDC-0980 XL765 BEZ235 PF-04691502 PF-05212384 SF1126	Diarrhea Rash, ↑BS ↑LFTs, N/V, rash, fatigue Mucositis, fatigue Fatigue, rash ↑LFTs, ↑BS, rash, mucositis Diarrhea		
pan-PI3K	GDC-0941 BKM120 XL147 BAY80-6946 PX-866	Rash, ↑BS, TwI, ▶PLT Mood alteration, rash, ↑BS Rash, hypersensitivity ↑BS, liver/renal failure ↑LFTs, diarrhea		
Isoform specific/sparin g	BYL719 (α-specific) GDC-0032 (β-sparing) GS-1101 (δ-specific)	↑BS, nausea, vomiting, ↑BS, fatigue, renal failure ↑LFTs		

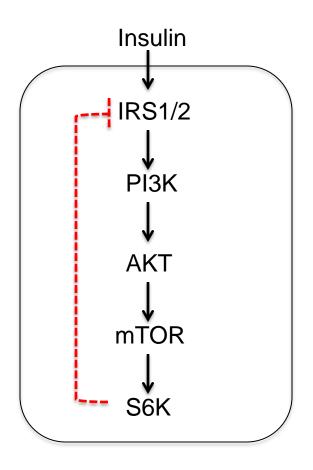
DLT = dose limiting toxicity; BS = blood sugar; N/V = nausea/vomiting; TwI = T-wave inversion; LFTs= transaminases; PLT = platelet


Dose-limiting Toxicities of mTOR and AKT inhibitors

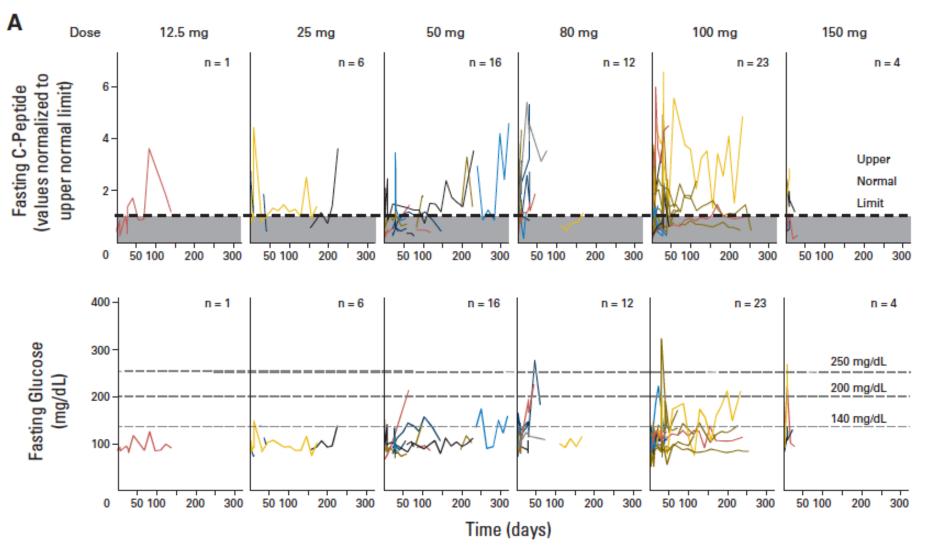
Target	Agents	DLT
mTOR	Temsirolimus Everolimus Ridaforolimus MLN0128 CC-223 AZD2014	Stomatitis, mood, fatigue, ↓PLT Stomatitis,↑BS, ↓PMN Mucositis ↑BS, rash, anemia ↑BS, rash, mucositis, fatigue Mucositis, fatigue
AKT	MK2206 GDC-0068 GSK2141795 AZD5363	Stomatitis, rash Fatigue ↑BS, ⊎BS, stomatitis ↑BS, rash, diarrhea, hypoxemia


DLT = dose limiting toxicity; BS = blood sugar; PMN = neutrophil; PLT = platelet

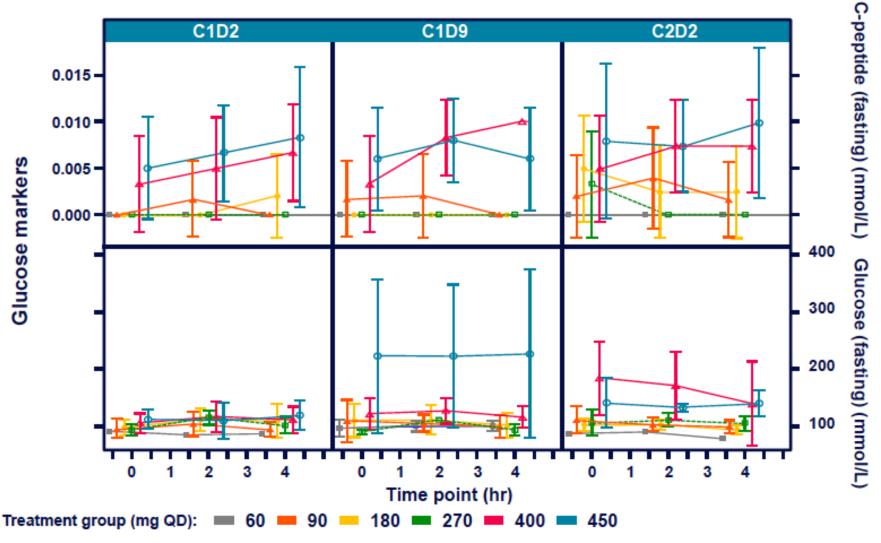
% Patients in Selected Phase I Trials of PAM Inhibitors with Hyperglycemia


■ CTCAE Grade ≥ 3

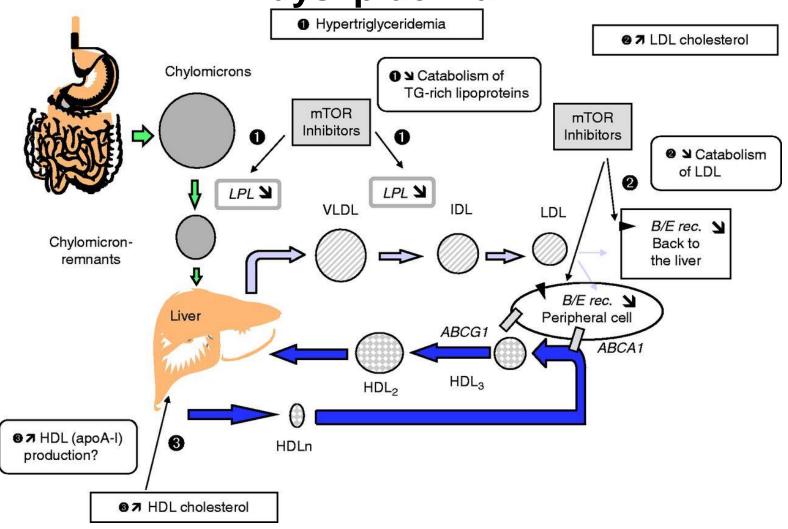
Pathophysiology of PAM pathway inhibitor induced hyperglycemia (primarily mTOR inhibitor)



Inhibition of PI3K (p110α) or AKT leads to Insulin Resistance

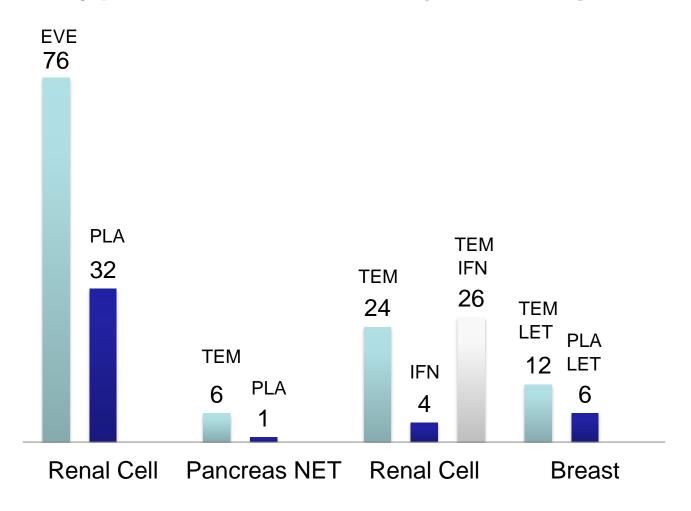

- Decreased peripheral glucose uptake and glycogen synthesis
- Increased levels of circulating glucose
- Triggers release of insulin (and C-peptide)

Elevation of C-Peptide occurs before onset of fasting hyperglycemia with BKM120 (pan PI3Ki)



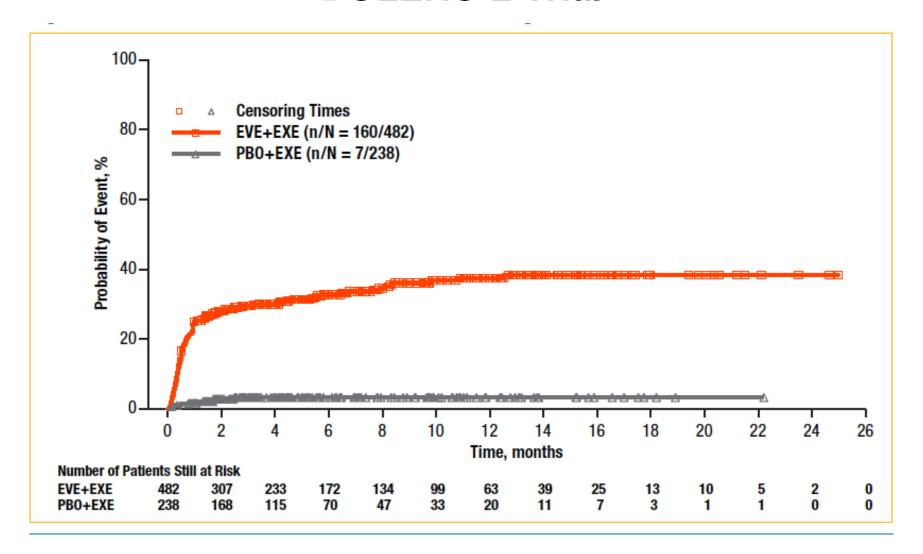
Bendell JC et al J Clin Oncol 2012(30):282-290.

Pharmacodynamic effects of BYL719 on glucose metabolism: Increase of C-peptide to compensate drug-induced glucose elevation at ≥400 mg


Pathophysiology of mTOR inhibitor induced dyslipidemia

Vergès B et al. Eur J Endocrinol 2014;170:R43-R55

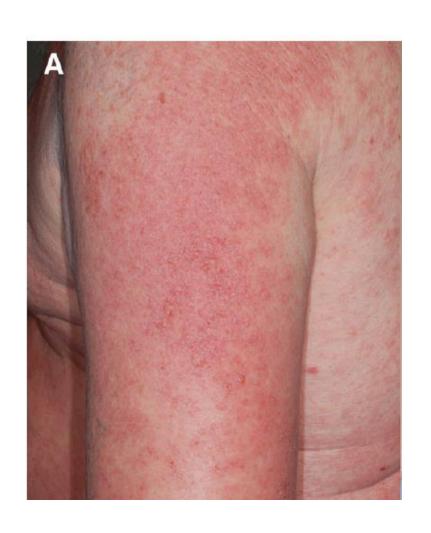
% Patients in Selected mTOR Inhibitor Trials with Hypcholesterolemia (CTCAE grade ≥ 1)


EVE = everolimus; PLA = placebo; TEM = temsirolimus; IFN = interferon; LET = letrozole; NET = neuroendocrine tumor

mTOR Inhibitor Induced Stomatitis

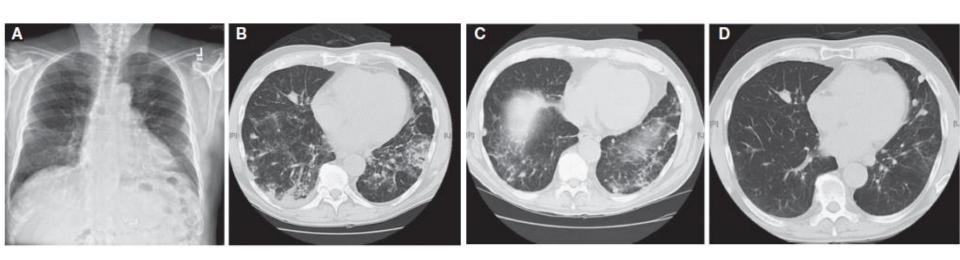
- Small ovoid ulcers with gray halo & erythematous ring
- Non-keratinized, movable oral surfaces
 - buccal & labial mucosa, lateral tongue, soft palate
- Early onset, often painful
- Severity often peaks within first cycle
- Similar presentation with PI3K inhibitor stomatitis

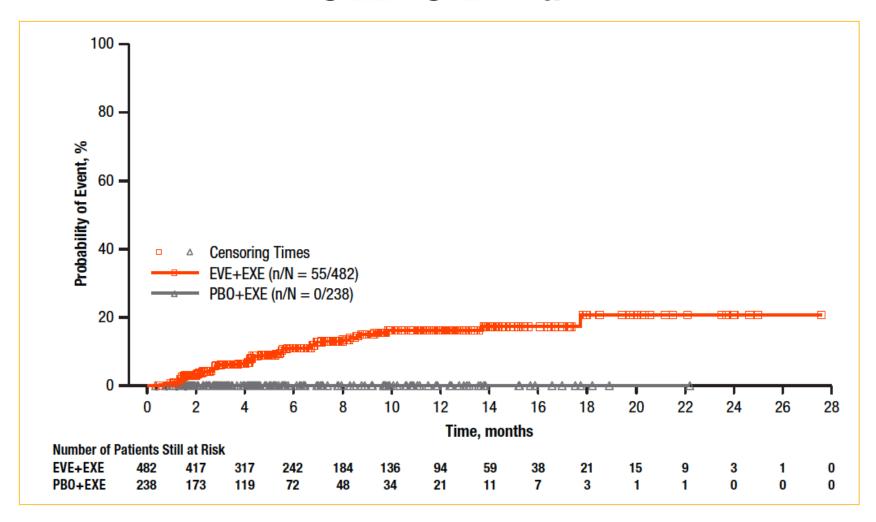
Time to Onset of Grade ≥ 2 Stomatitis in BOLERO-2 Trial



PAM Inhibitor Induced Rash

- Often presents as pruritic, erythematous maculopapular
 - Face, trunk, scalp, abdomen, extremities
- May coalesce into large plaque-like areas
- Skin biopsies = spongiotic dermatitis & perivascular infiltrate
- Other presentations (mTOR)
 - Pustules, nodular lesions, eosinophilic-hypersensitivity


PAM Inhibitor Induced Rash



PAM Non-Infectious Pneumonitis

- New radiographic interstitial lung infiltrates
 - Symptoms may include cough or dyspnea
 - Negative blood, sputum, and broncho-alveolar (BAL) cultures
- Biopsies may show organizing pneumonia, granulomatous inflammation or lymphocytic infiltrate
- Most well-described with mTOR inhibitors, but also seen with PI3K and PI3K/mTOR dual inhibitors

Time to Onset of Grade ≥ 2 Pneumonitis in BOLERO-2 Trial

Non-Infectious Pneumonitis in BOLERO-2 Trial

NIP and Related Events Characteristics	EVE+EXE n=482	PBO+EXE n=238	
Any grade, (n)	20%	0%	
Grade 3	4%	0%	
Grade 4	0.2%	0%	
Percentage (n) of patients and median time for complete resolution from grade 3	75% (15); 5.4 weeks	Not applicable	
Percentage (n) of patients and median time for complete resolution from grade 2	83% (29); 5.1weeks	Not applicable	
Dose interruptions, % (n)	10% (48)	Not applicable	
Treatment discontinuation related to NIP, % (n)	7% (33)	Not applicable	

Comparing Adverse Event Profiles of PI3K-mTOR inhibitors, Pan-PI3K inhibitors, and BYL719

		Drug					
		PI3K-mTC	OR inhibitors	Pan-PI3K inhibitors	PI3K alpha specific inhibitor		
Drug-related AE (%)	Grades	GSK2126458 (at MTD) n=44	GDC-0980 (all dose levels) n=33	BKM120 (all dose levels) n=81	BYL719 (all dose levels) n=35		
Hyperglyceamia	All	7	83	30	49		
	3–4	2	14	5	14		
Nausea	All	11	36	30	37		
	3–4	0	0	0	6		
Fatigue/Asthenia	All	18	58	24	31		
	3–4	0	3	1	3		
Decreased	All	-	36	30	31		
appetite	3–4		0	0	0		
Diarrhea	All	16	45	30	26		
	3–4	2	6	4	0		
Vomiting	All	5	18	NR	17		
	3–4	0	0		0		
Rash	All	5	36	27	17		
	3–4	0	6	5	3		

Safety Profile of Idelasilib in Refractory CLL (δ-selective inhibitor)

Event (n = 54)	Any grade	Grade ≥3		
Fatigue	31.5%	1.9%		
Diarrhea	29.6%	5.6%		
Pyrexia	29.6%	3.7%		
Pneumonia	20.4%	18.5%		
Neutropenic fever	11.1%	11.1%		
Vomiting	11.1%	1.9%		
Increased AST*	24.1% 1.9%			
Increased ALT*	18.5%	1.9%		

^{*} In total, 15 patients experienced elevated transaminases.

[•] Serious AEs included cellulitis (6%) colitis (6%), bronchitis (4%), infection (4%) and sepsis (4%).

Safety Profile of GDC-0032 in Advanced Solid Tumors (β-isoform sparing PI3K inhibitor)

Table 2. AEs (≥ 10% or Any Grade ≥ 3) Potentially Related to GDC-0032								
Adverse Event, n (%)	Grades	3 mg (n=6)	5 mg (n=3)	8 mg (n=4)	9 mg Expan. (n=23)	12 mg (n=10)	16 mg (n=11)	All Patients (N=57)
Diarrhea	All ≥3	1 (17) -	1 (33) -	1 (25) -	11 (48) 1 (4)	5 (50) -	7 (64) 2 (18)	26 (46) 3 (5)
Hyperglycemia	All ≥3	- -	-	2 (50)	7 (30) 2 (9)	3 (30) 2 (20)	8 (73) 3 (27)	20 (35) 7 (12)
Fatigue	All ≥3	2 (33)	1 (33)	1 (25)	7 (30)	5 (50) -	5 (46) 2 (18)	21 (37) 2 (4)
Nausea	All ≥3	2 (33)	1 (33)	1 (25)	9 (39)	3 (30)	6 (55) -	22 (39)
Rash*	All ≥3	-	-	-	5 (22)	4 (40) 3 (30)	6 (55) 3 (27)	15 (26) 6 (11)
Decr. appetite	All ≥3	1 (17)	1 (33)	1 (25)	7 (30)	5 (50)	5 (46)	20 (35)
Stomatitis*	All ≥3	-	-	-	-	6 (60) 1 (10)	4 (36)	10 (18) 1 (2)
Vomiting	All ≥3	-	1 (33)	-	4 (17) -	-	4 (36) -	9 (16) -
Colitis		-	-		1 (4)	1 (10)	-	2 (4)

Summary

- Frequently observed toxicities of PAM inhibitors
 - Hyperglycemia, hyperlipidemia
 - Rash, stomatitis
 - Pneumonitis
 - Diarrhea, nausea/vomiting
 - AST/ALT elevation
 - Fatigue
- Mechanism of action, potency, and schedule of administration may influence toxicity profile
- Early recognition of toxicities is important to ensure optimal medical management

