

European Society for Medical Oncology

PERSONALISED MEDICINE SYMPOSIUM

SIGNALLING PATHWAYS SYMPOSIUM

Targeting the PI3K/AKT/ mTOR pathway in cancer

Sitges, Barcelona 28 February - 1 March 2014

CLINICAL DEVELOPMENT OF PI3K INHIBITORS IN BREAST CANCER

Cristina Saura, MD

DISCLOSURE SLIDE

I have served in Advisory Boards for Puma Biotechnology

ESMO Signalling Pathways 2014

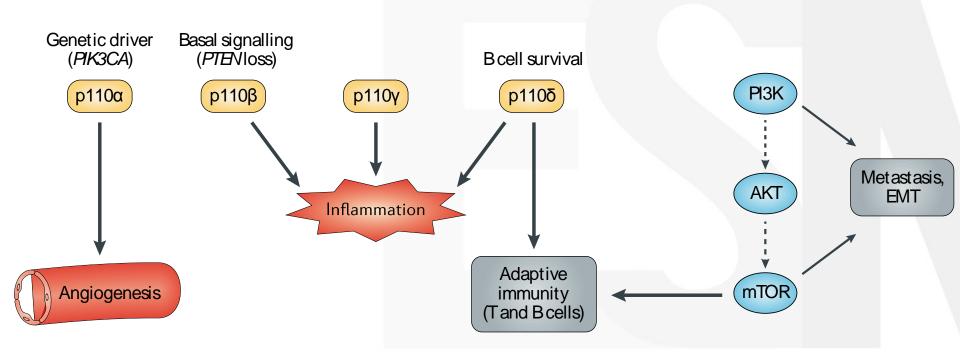
OUTLINE

- ✓ PI3K/mTOR pathway as a target in breast cancer
- Lessons learned from early drug development of PI3K inhibitors
- ✓Trials in progress
- ✓Outstanding questions and next steps

OUTLINE

✓ PI3K/mTOR pathway as a target in breast cancer

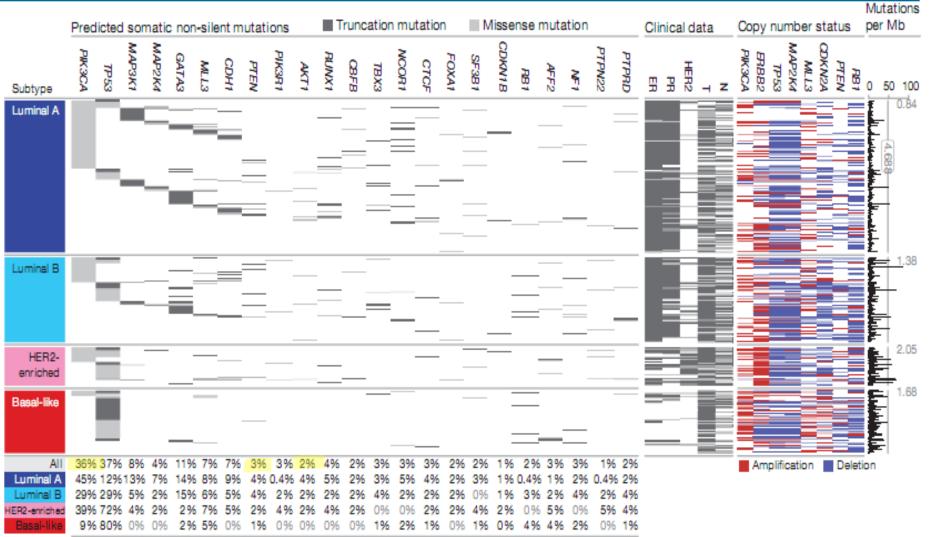
 Lessons learned from early drug development of PI3K inhibitors


✓Trials in progress

Outstanding questions and next steps

PI3K pathway and relevance in breast cancer

PI3K pathway has a prominent role in cancer cell metabolism, growth, migration, survival and angiogenesis


Fruman & Rommel, Nat Rev Drud Discov 2014: 140-156

PI3K pathway and relevance in breast cancer

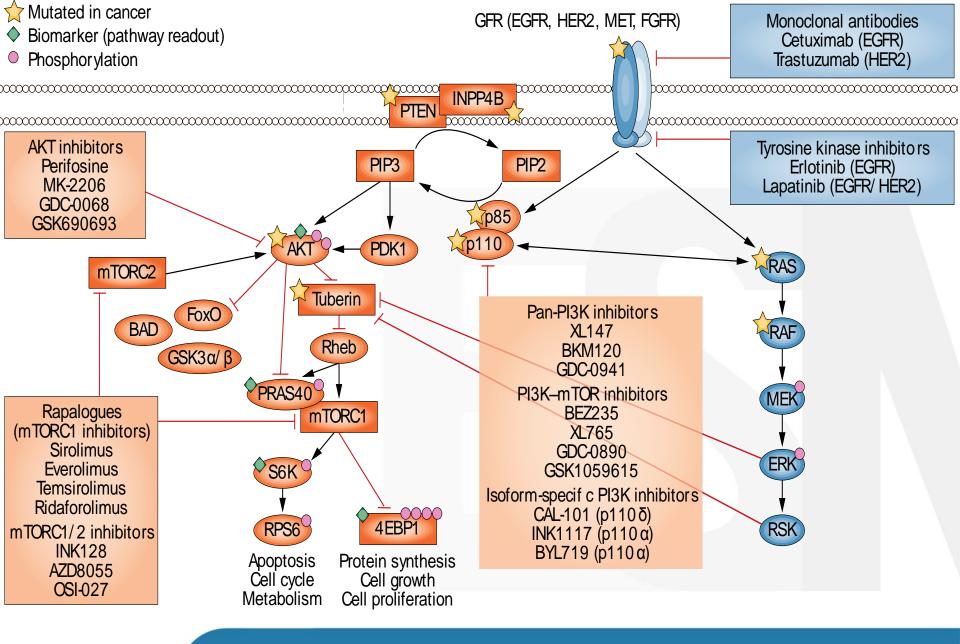
- Activation of the PI3K pathway is commonly observed in human cancer and is critical for tumor progression and resistance to anti-neoplastic drugs
- PI3K pathway is the most frequently activated pathway in breast cancer

PI3K pathway and relevance in breast cancer

Percentages of cases with mutation by expression subtype

TCGA, Nature 2012: doi:10.1038/nature 11412

OUTLINE


✓ PI3K/mTOR pathway as a target in breast cancer

Lessons learned from early drug development of PI3K inhibitors

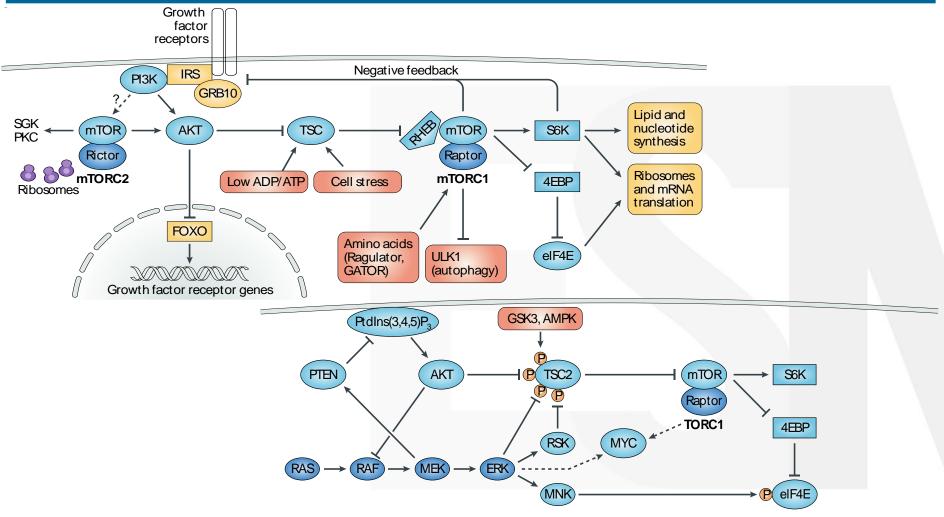
✓Trials in progress

Outstanding questions and next steps

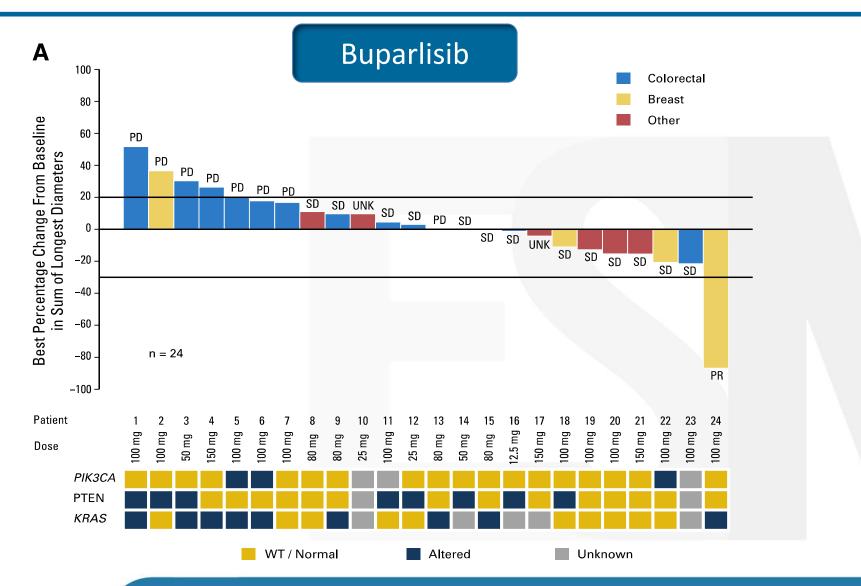
Rodon et al, Nat Rev Clinical Oncology 2013

Class of agent

- Pan-PI3K inhibitor (27%)
- AKT inhibitor (27%)
- PI3K–mTOR inhibitor (19%)
- mTORC1_mTORC2 inhibitor (10%)
- PI3Kδ inhibitor (7%)
- Pan-PI3K or PI3K/ mTOR inhibitor (5%)
- PI3Kα inhibitor (4%)
- PI3Kβ inhibitor (1%)


Treatment strategy

- Monotherapy (35%)
- Combination with chemotherap y (15%)
- Combination with MEK inhibitors (14%)
- Combination with chemotherap y and mAb (13%)
- Combination with inhibitor against tyrosine kinase other than MEK (10%)
- Combination with mAb (6%)
- Combination with hor monal therapy (5%)
- Others (2%)


Rodon et al, Nat Rev Clinical Oncology 2013

Development of PI3Ki in breast cancer: alone or in combination?

Fruman & Rommel, Nat Rev Drud Discov 2014: 140-156

Bendell et al, J Clin Oncol, 2012, 282-290

XL 147

	Best	Dose,	Time on study treatment,	Number of prior		Time on last prior
Tumor type	response	mg	days	regimens	Most recent prior regimen	regimen, days
NSCLC*	SD	30 21/7	224	4	Gemcitabine/Alvocidib	37
Basal cell [†]	SD	60 21/7	392	2	Docetaxel	64
NSCLC*	SD	60 21/7	216	5	Pemetrexed	99
NHL† ‡	SD	120 21/7	330	11	Rituximab	207
NSCLC* [§]	PR	225 21/7	616	4	Pemetrexed	43
Prostate **	SD	600 21/7	198	1	Biclutamide/Leuprorelin	764
NSCLC ⁺	SD	600 21/7	132	4	Gemcitabine	72
Breast ⁺ (HER2 amplified)	SD	600 21/7	160	10	Vinorelbine/Bevacizumab	127
Pancreas†	SD	100 CDD	177	6	Gemcitabine/Capecitabine/ Erlotinib	117
Adenoid cystic [†]	SD	100 CDD	721	1	Investigational	100
Colon*	SD	400 CDD	200	6	Investigational	55
NSCLC [†]	SD	600 CDD	168	4	Pemetrexed	366
Tongue (<i>PIK3CA</i> <i>E545K</i>)	SD	600 CDD	230	4	Cisplatin/Docetaxel/5FU	7
NSCLC	SD	600 CDD	175	4	Docetaxel	71

*No mutations affecting PI3K pathway detected; †tumor mutational analysis not performed; ‡enrollment of this patient occurred after a special allowance was granted by the sponsor; §Dose escalation to 400mg after 40 weeks; **PSA normalization >5 months. 21/7 = dose administered for the first 21 days of a 28-day cycle; CDD = continuous once-daily dosing; NA = not applicable; NHL = non-Hodgkin lymphoma; NSCLC = non-small cell lung cancer; PR = partial response; SD = stable disease.

GDC0941

Study GDC4254g: Clinical Activity

- Three patients were on study for ≥ 4 months (Table 2).
- One patient with metastatic melanoma had a confirmed partial response by RECIST.

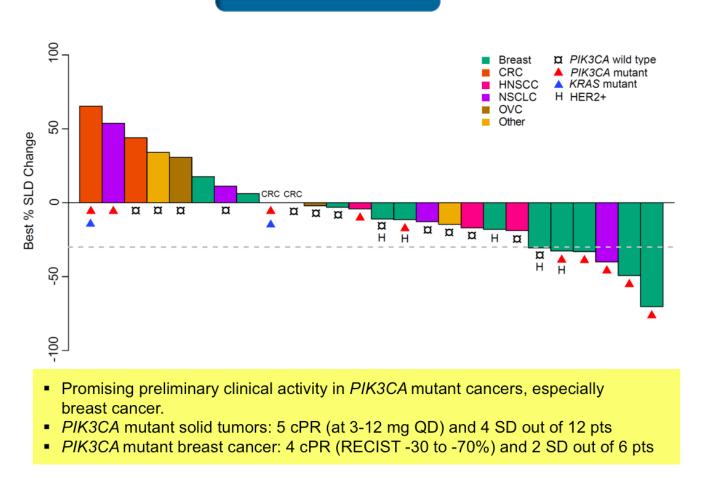
Diagnosis (Year) (Patient ID)	GDC- 0941 QD Dose	Months	Day 15 AUC ₀ (µM•hr)	Best RECIST Response*	Best FDG-PET Response ^t	Best CA-125 Response	pS6 Change ^r	pAKT Change ^d	Pathway Alteration
Melanoma (2005) (50033)	330 mg	9.6	15.4	- 39.2%	- 0.7%	(***	ND	- 73%	BRAF V600E
GIST (2006) (50036)	450 mg	7.5	23.0	- 1.8%	- 49.4%	- <u></u>	- 75%	Pend.	Pend.
Ovarian (2004) (50020)	100 mg	4.5	9.2	+4.4%	- 29.9%	- 86%*	- 56%	- 90%	PTEN Negative

ND = Not Done.

a) % change from baseline in sum of longest clameter of target lesions.

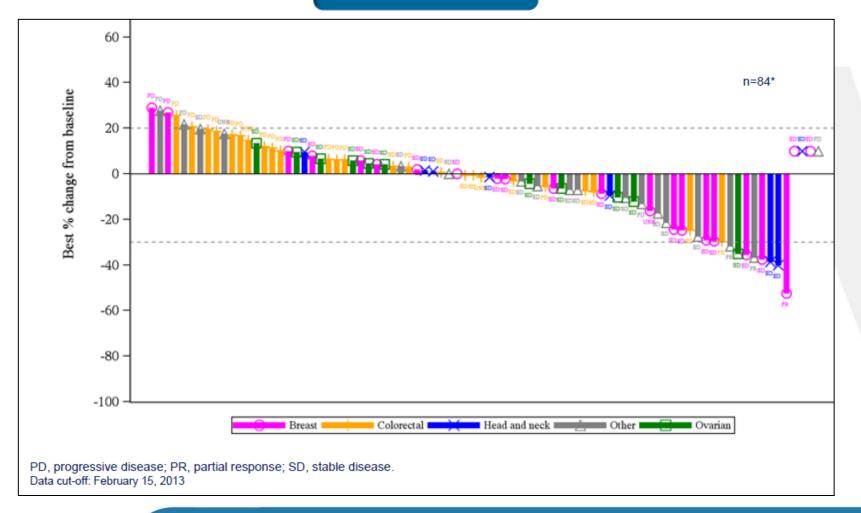
b) % change from baseline in mean SUVmax of regions of interest.

c) % change in pS61-vels in pretreatment and Cycle 1 tumor biopsies.


c) Maximum % change from baseline in pART measured on Day 1 after a single dose of GDC-0941

c) Represents change from high ost to lowest value during treatment. CA-125 levels in creased rapidly before treatment

initiation. Change from screening value was 67%



Pts shown had measurable disease with pre-treatment and on-study tumor assessments as of 30 Nov 2012

Juric et al, AACR 2013

BYL719

Rodón et al, AACR 2013

PI3K pathway inhibitors against breast cancer

Agent	Trial	Description	Patients (<i>n</i>)			
mTORC1/2 inhibito	rs					
INK128 (Intellikine)	Phase I (NCT01351350)	Dose escalation in combination with paclitaxel ± trastuzumab	Advanced or metastatic solid tumours (95)			
AZD2014 (AstraZeneca)	Phase I (NCT01597388)	Safety and tolerability in combination with fulvestrant	ER+ advanced MBC (30)			
Dual PI3K-mTOR inhibitors						
XL765 (Sanof)	Phase I–II (NCT01082068)	Dose escalation in combination with letrozole	HR+, HER2- recurrent or MBC (99)			
BEZ235 (Novartis)	Phase I (NCT01248494) Phase I–II (NCT01471847) Phase I (NCT01285466)	Safety and tolerability in combination with endocrine therap y Dose escalation in combination with trastuzumab Dose escalation in combination with paclitaxel ± trastuzumab	HR+ MBC (72) HER2+ locally advanced MBC (5) HER2+ MBC (72)			
GDC-0980 (Genentech)	Phase II (NCT01437566)	Safety and eff cacy in combination with fulvestrant versus fulvestrant	ER+ locally advanced or MBC (270)			
GSK2126458 (GlaxoSmithKline)	Phase I (NCT00972686)	Dose escalation, f rst in human	Solid tumours or lymphoma (150)			
Pan-PI3K inhibitors						
XL147 (Sanof)	Phase I–II (NCT01042925) Phase I–II (NCT01082068)	Study in combination with trastuzumab \pm paclitaxel Dose escalation in combination with letrozole	HER2+ MBC with progression on trastuzumab (42) HR+, HER2– recurrent or MBC (99)			
BKM120 (Novartis)	Phase II (NCT01572727) Phase III (NCT01633060) Phase III (NCT01610284)	Study in combination with paclitaxel Study in combination with fulvestrant Study in combination with fulvestrant	HER2– locally advanced or MBC with or without PI3K activation (200) HR+, HER2–, Al treated, locally advanced or MBC that progressed on or after mTOR inhibitor therapy (615) HR+, HER2– locally advanced or MBC refractory to Al (842)			
GDC-0941 (Genentech)	Phase II (NCT01437566)	Safety and eff cacy in combination with fulvestrant versus fulvestrant	ER+ locally advanced or MBC (270)			
PI3Ka inhibitors						
BYL719 (Novartis)	Phase I (NCT01219699)	Dose escalation ± fulvestrant	Advanced solid malignancies (140)			
GDC-0032 (Genentech)	Phase I (NCT01296555)	Dose escalation ± fulvestrant and letrozole	Locally advanced or metastatic solid tumour s (122)			
РІЗҚ β inhibitor						
GSK2636771 (GlaxoSmithKline)	Phase Hla (NCT01458067)	Dose escalation	Advanced solid tumours with PTEN def ciency (150)			
AKT inhibitors						
MK-2206 (Merck)	Phase I (NCT01344031) Phase II (NCT01277757)	Dose escalation + anastrozole, letrozole, exemestane, or fulvestrant Eff cacy	ER+ MBC (54) Advanced BC with a <i>PIK3CA</i> mutation and/ or PTEN loss (40)			
AZD5363 (AstraZeneca)	Phase I (NCT01625286)	Safety, tolerability and eff cacy in combination with paclitaxel	Advanced ER+ BC (110)			

Zardavas & Baselga & Piccart, Nat Rev Clin Oncol 2013: 191-210

What limits or enhances the development of a PI3Ki?

✓Toxicity profile: manageable?

- ✓Hyperglycemia
- ✓Rash

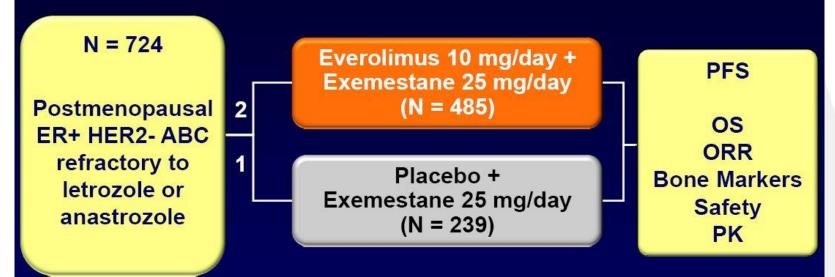
✓ Gastrointestinal tolerance: anorexia, nausea, vomiting,

- dyspepsia, diarrhea
- ✓ Stomatitis
- ✓ Preliminary signs of activity

Strategic decisions of the company that owns the drug

OUTLINE

✓ PI3K/mTOR pathway as a target in breast cancer


 Lessons learned from early drug development of PI3K inhibitors

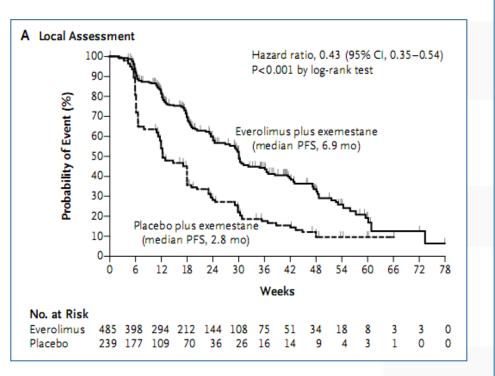
✓Trials in progress

Outstanding questions and next steps

BOLERO-2: Trial Design

- Stratification:
 - 1. Sensitivity to prior hormonal therapy
 - 2. Presence of visceral disease

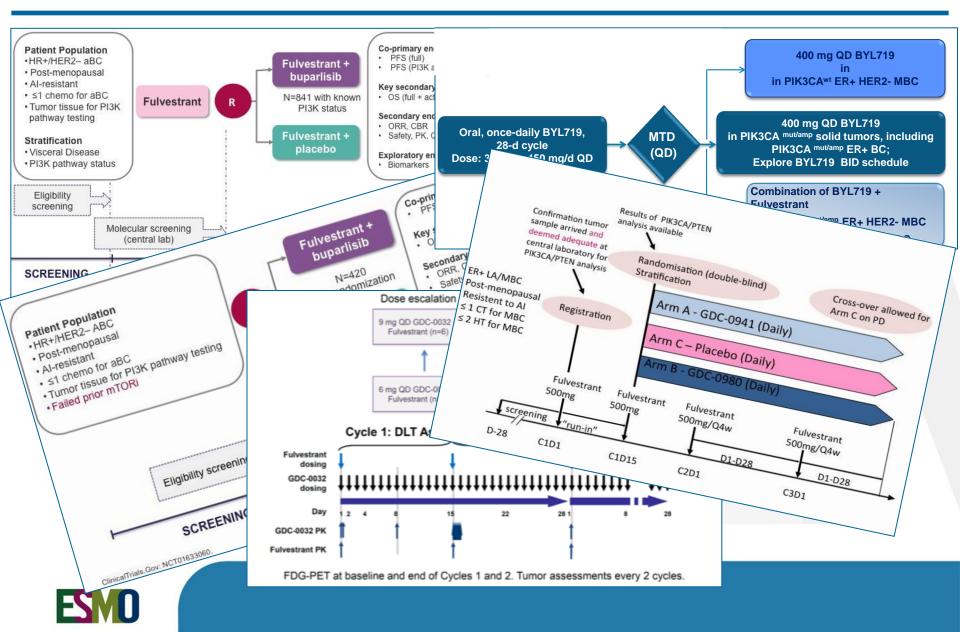
No crossover


ABC: advanced breast cancer, NSAI: non steroidal aromatase inhibitors, HER2-: human epidermal growth factor receptor 2 – negative; PFS: progression-free survival; PK: pharmacokinetics

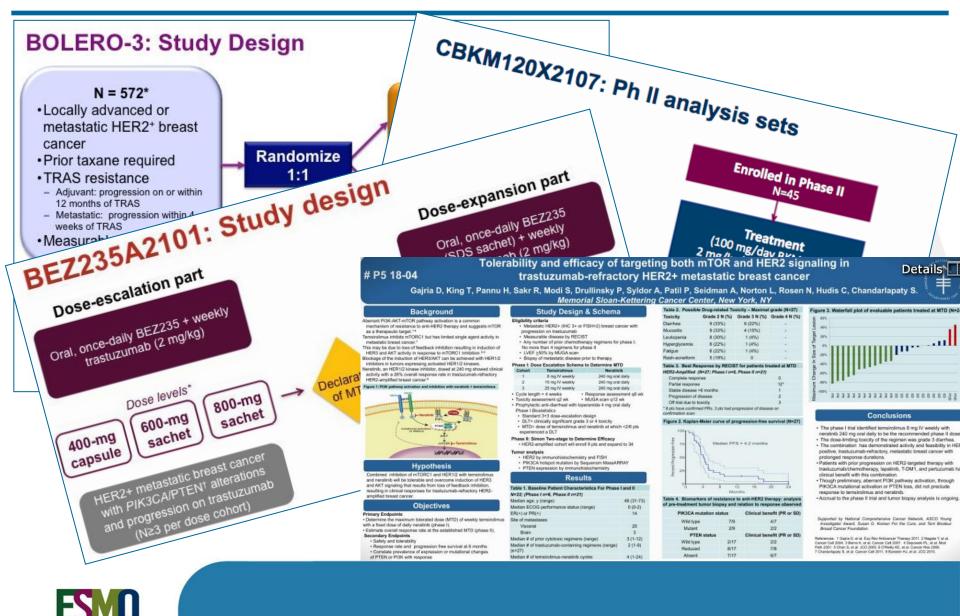
Baselga J, et al. Ann Oncol. 2011;47(Suppl 2): Abstract: 9LBA.

Baselga et al, NEJM 2012 366, 36: 520-529

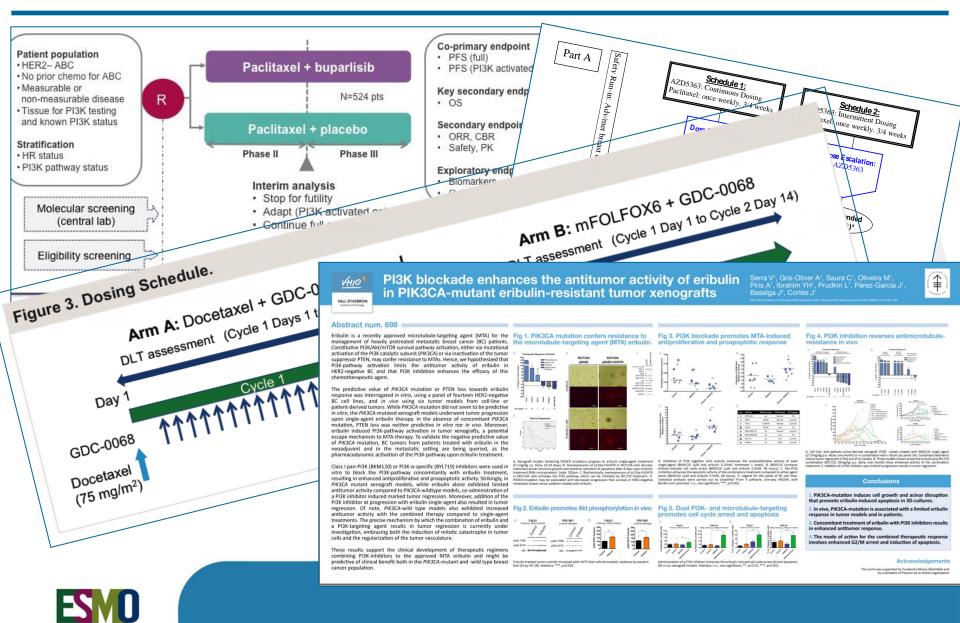
Bolero 2



Subgroup	No.	Hazard Ratio (95% CI)
All patients	724	••••••
Age		
<65 yr	449	
≥65 yr	275	
Region		
Asia	137	·
Europe	275	
North America	274	
Other	38 ⊢	
Baseline ECOG performance status		
0	435	⊨_ _
1 or 2	274	
Sensitivity to previous hormonal therapy		
Yes	610	
No	114	
Visceral metastasis		
Yes	406	
No	318	
Measurable disease	510	
Yes	500	
No	224	
No. of previous therapies	224	
1	118	
2	217	
≥3	389	
Most recent therapy	505	
Aromatase inhibitor	532	
Antiestrogen	122	
Other	70	
Purpose of most recent therapy	70	
Treatment of advanced or metastatic disease	586	
Adjuvant therapy	138	
Previous treatment with fulvestrant	110	
Yes	119	
No	605	⊢-∎
Previous chemotherapy		
Yes		_
Neoadjuvant or adjuvant therapy only	306	
Treatment of metastatic disease (with or without neoadjuvant or adjuvant therapy)	186	
No	232	
Positive status for progesterone receptor		
Yes	523	⊢ ∎→
No	184	▶ ──■ ── →
	0.1	0.3 0.5 1.0
		Everolimus Better Placebo Better

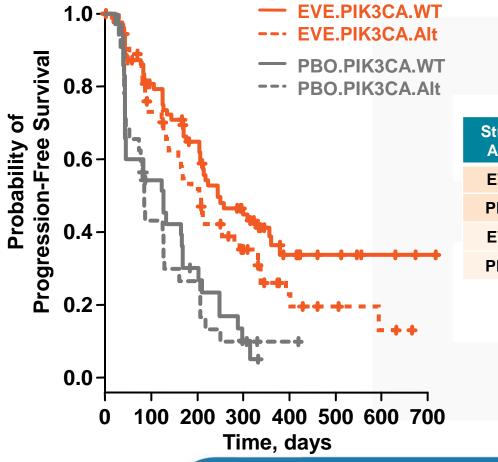


Baselga et al, NEJM 2012 366, 36: 520-529


Ongoing Clinical Trials HR+ disease

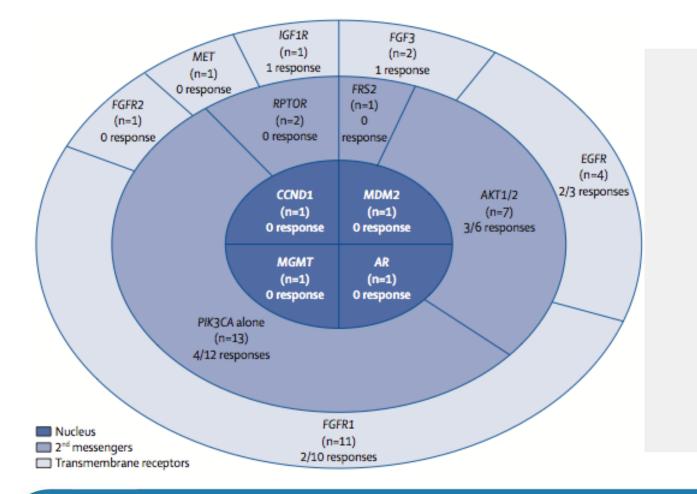
Ongoing Clinical TrialsHER+ disease

Ongoing Clinical Trialschemo+PI3Ki


OUTLINE

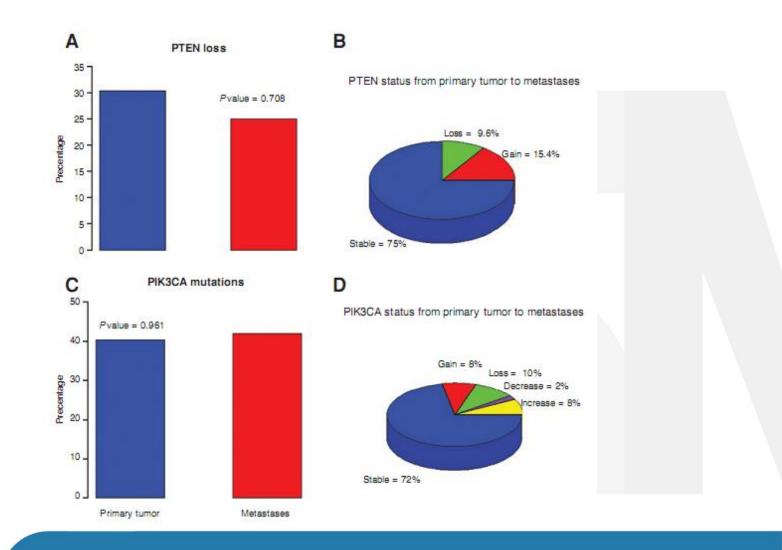
- ✓ PI3K/mTOR pathway as a target in breast cancer
- Lessons learned from early drug development of PI3K inhibitors
- ✓Trials in progress
- Outstanding questions and next steps

Patient selection

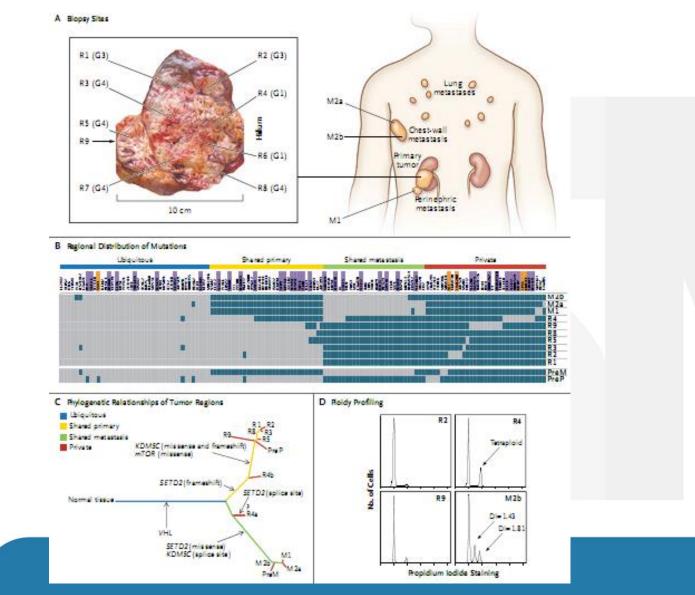

EVE Benefit Maintained in Patients Regardless of Gene Alterations in PIK3CA

Study Arm	РІКЗСА	Subgroup, n	PFS events, n (%)	HR (95%CI)
EVE	WT	83	44 (53%)	0.36
PBO	WТ	36	31 (86 %)	(0.22 - 0.57)
EVE	Alt	74	50 (68%)	0.44
PBO	Alt	34	28 (82%)	(0.27 - 0.70)

Hortobagy G et al, ASCO 2013, Oral Abs 509


Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER)

Andre F et al, Lancet Oncol 2014


Changes in PI3K status from primary to metastasis

Gonzalez-Angulo et al, Mol Cancer Ther 2011:10, 1093-1101

Intratumoral Heterogeneity

Gerlinger et al, NEJM 2012, 366:10: 883-892

Liquid biopsies

Detection of Tumor *PIK3CA* Status in Metastatic Breast Cancer Using Peripheral Blood

Michaela J. Higgins, Danijela Jelovac, Evan Barnathan, et al.

Longitudinal Massively Parallel Sequencing Analysis of Circulating Cell-Free Tumor DNA: A Feasibility Study

Leticia De Mattos-Arruda¹, Javier Cortes¹, Cristina Saura¹, Paolo Nuciforo¹, Francois-Clement Bidard^{2,3}, Helen H Won², Britta Weigelt², Michael Berger², Joan Seoane¹, and Jorge S Reis-Filho²

1. Mutant allele frequencies are distinct between primary tumor and metastasis

Class Mutation

neShift De

Table 1. Mutant allele frequencies of somatic mutations identified in the primary breast tumor and liver metastasis. Low allele

1. Vall d'Hebron Institute of Oncology, Barcelona, Spain; 2. Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 3. Institut Curie, Paris, France

Background

Massively parallel sequencing studies have revealed that cancers harbor intra-tumor genetic heterogeneity. In addition, differences in the mutational repertoire between primary tumors and their metastases have been observed. Biomarker assessment using single tumor biopsies of the primary or metastatic lesions therefore may not be representative of the entire mutational repertoire. Plasma-derived cell-free tumor DNA (ctDNA) has been shown to constitute a potential surrogate for tumor DNA obtained from tissue bioosies for the assessment of tumor markers^{1,2}.

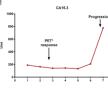
We hypothesize that:

- Genetic data obtained from massively parallel sequencing analysis of ctDNA of breast cancer patients may be more informative than those of single tumor tissue biopsies.
- ctDNA would constitute a tool to identify the presence of potentially actionable driver somatic genomic alterations, and monitor changes in the genetic landscape during the course of therapy. !

Patients and Methods

One patient with estrogen receptor (ER)-positive/ HER2-negative, highly proliferative breast cancer (BC) and synchronous distant metastases was included in this study.

Patient: BC and synchronous bone and liver metastases


Multiple plasma samples were collected during the 4th line of treatment with an AKT inhibitor.

- P DNA was extracted from archival tumor, plasma and peripheral blood leucocytes.
- 22-250ng of DNA were subjected to targeted capture massively parallel sequencing on a Illumina HiSeq2000 using the IMPACT platform³, which comprises 300 cancer genes known to harbor actionable mutations.
- Paired-end sequencing reads were aligned to the reference human genome hg19 using the Burrows-Wheeler Aligner (BWA).
- Somatic mutations were called using muTect for single base substitutions, and Somatic Indel Detector for insertions and deletions (indels).
- Targeted capture massively parallel sequencing yielded average read depths ranging from 25x to 139x in the archival primary and metastatic tumors, from 282x and 918x in the ctDNA samples, and from 29-76x in the normal samples.

Results

4. Clinical assessment of response to AKT inhbition

Clinical assessment: CA15.3 levels: longitudinal monitoring and modulation.

Best response: Stable disease as per RECIST1.1 (8 months)

Figure 3. Longitudinal monitoring of the CA15.3 levels throughout the 4th line of systemic treatment with single agent AKT inhibitor. *PET, pharmacodynamic response.

Conclusions

- Analysis of the mutational repertoire of a single diagnostic biopsy of a primary tumor may not be representative of that of the metastases.
- Targeted capture massively parallel sequencing analysis of plasma-derived ctDNA captures the mutations present in both, the primary tumor and distant metastasis, providing evidence to suggest that ctDNA may be a useful source of biological material for biomarker assessment in patients with advanced breast cancer.
- Targeted capture massively parallel sequencing of plasma-derived ctDNA may be used as a quantitative marker for longitudinal follow-up and disease monitoring of genetic somatic alterations during the course of targeted therapy.

References

- De Mattos-Arruda L, Cortes J, Santarpia L, et al. Circulating turnour cells and cell-free DNA as tools for managing breast cancer Nature Reviews Clinical Oncology 2013; 10: 377-389.
- Bidard FC, Weigelt B, Reis-Filho JS. Going with the flow: from circulating turnor cells to DNA. Sci Transl Med 2013; 5: 207ps214.
 Wagle N, Berger MF, Davis MJ, et al. High-throughput detection of actionable genomic alterations in clinical turnor samples by targeted. massively parallel sequencing. Cancer Discov 2012: 2: 82-93.

Email to: Idmattos@ir.vhebron.net

Higgins et al, Clin Cancer Res 2012: 3462-69 De Mattos et at, SABCS 2013, PD4-5

frequency mutations in the primary tumor, such as ESR1, were found to be enriched in the liver metastasis. The nonsense mutation in *PAK7* and the missense mutation *FLT4* in the metastasis could not be identified in the primary tumor.! 2. ctDNA analysis captures the heterogeneity of primary tumor and metastasis !

Gene

AKT1

CDH1

CDKN2A TP53

NE

TSC1 JAK3 MLL3

EPHB1 PIK3C2G ESR1

MAP2K

CTNNB1 GATA1 FLT4 PAK7 Mutation

Figure 1. Venn diagram of somatic mutations identified in the primary tumor, liver metastasis and ctDNA using targeted capture massively parallel sequencing. Not all mutations identified in the metastasis were found in the primary tumor. Analysis of ctDNA of this patient, however, captured all mutations present in the primary tumor and liver metastasis.

3. ctDNA for disease monitoring

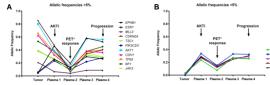
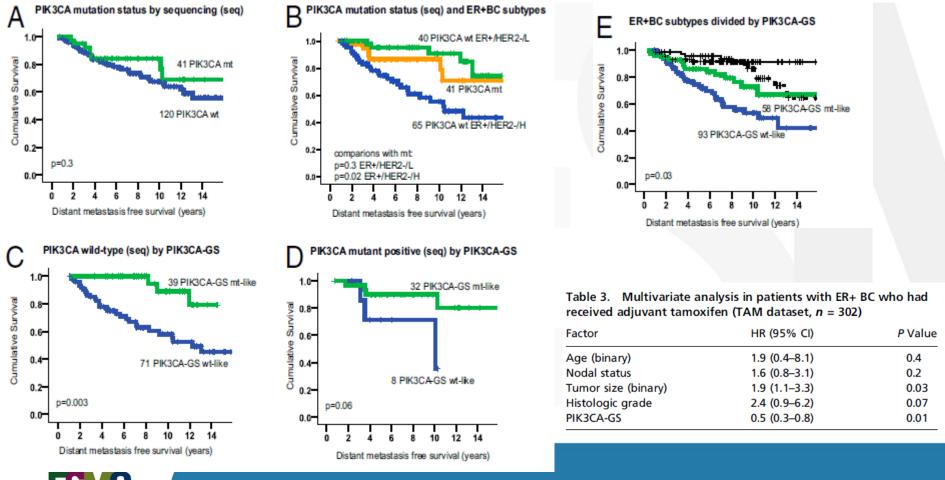
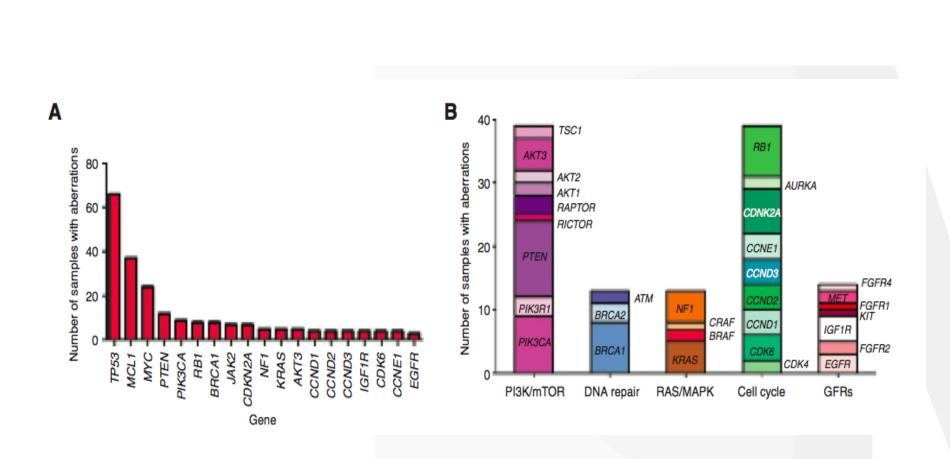
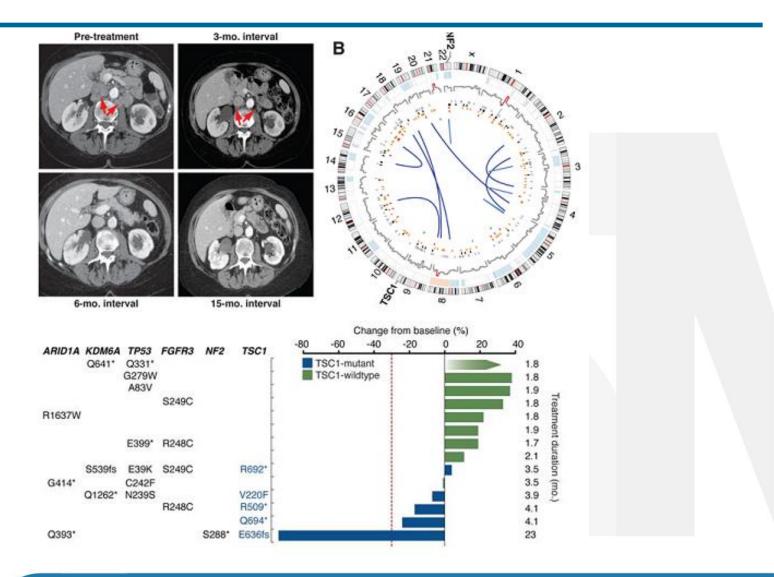



Figure 2. Longitudinal monitoring of the mutant alieles of the primary turnor and four plasma DNA samples. A, genes whose high confidence mutations were detected in 25% of the alieles of the primary turnor, B, genes whose high confidence mutations were detected in the plasma-derived cIDNA, but either absent or present in <5% of the alieles of the primary turnor. Arrow, initiation of AKT inhibitor treatment. "PET, pharmacodynamic response.

Defining better biomarkers of response


PIK3CA mut associated with gene signature of low mTORC1 signaling and better outcome s in ER+ BC

Loi S. *et al.* PNAS 2010;107(22):10208-10213


Neoadjuvant Model

Balko et al, Cancer Discovery 2014: 232-245

From bedside to bench

Lier et al, Science 23 August 2012 / Page 1/ 10.1126/science.1226344

CONCLUSIONS

- PI3K is an important pathway to target to overcome resistances to different agents in the clinic
- The combination strategy seems the most appropriate to develop in the clinic
- PI3K mutation status alone does not seem to select patients who derive more benefit from treatments
- Prospective well designed clinical trials will hopely define how to better select population to maximize the benefit of PI3Ki
 - Biopsies in metastatic disease / circulating DNA
 - Neoadjuvant clinical trials
 - Accessibility to gene signatures and deep sequencing techniques

