

European Society for Medical Oncology

ESMO Preceptorship

Gastric cancer

Berlin, Germany 11-12 October 2013 www.esmo.org

The role of chemoradiotherapy in GE junction and gastric cancer

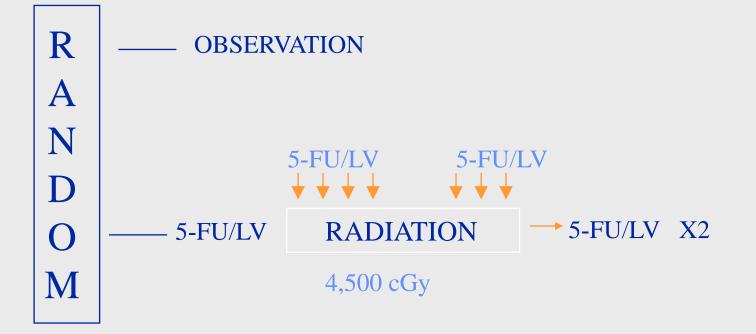
Karin Haustermans

UZ Herestraat 49 Leuven B - 3000 Leuven

www.uzleuven.be tel. +32 16 33 22 11 UNIVERSITY HOSPITALS LEUVEN

Overview

- Postoperative chemoradiotherapy
- Preoperative chemoradiotherapy
- Palliative radiation
- Technical aspects

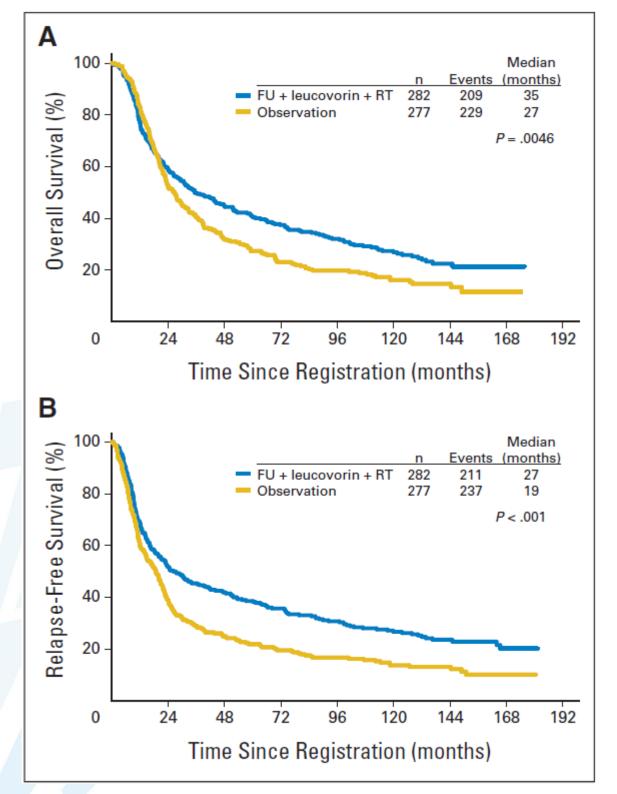

Overview

- Postoperative chemoradiotherapy
- Preoperative chemoradiotherapy
- Palliative radiation
- Technical aspects

GASTRIC CANCER SWOG 9008/INT 0116 RESECTED GASTRIC CANCER

SCHEMA

RESECTED STAGE IB-IV (MO) GASTRIC ADENOCARCINOMA



Post-operative Chemoradiotherapy

INT 0119 - SWOG 9008

	Surgery	Surgery chemo RT	p-value
Median DFS	19 months	30 months	p=0.001
3y survival Med. Survival	40% 27 months	50% 36 months	p=0.03

Macdonald J et al, NEJM 2001

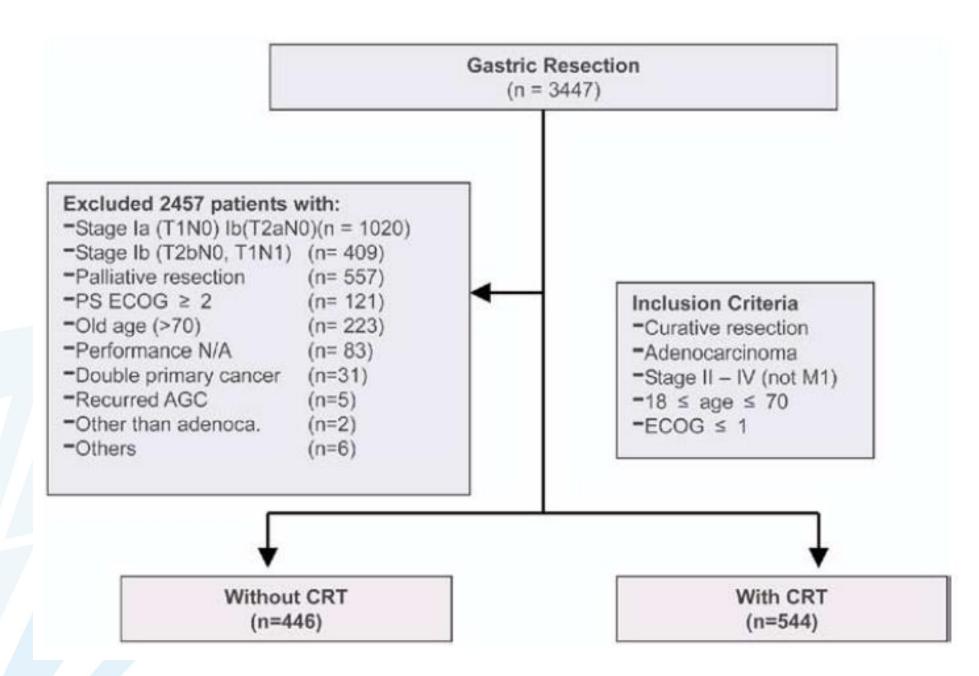
Smalley et al, JCO 2012

Post-operative Chemoradiotherapy

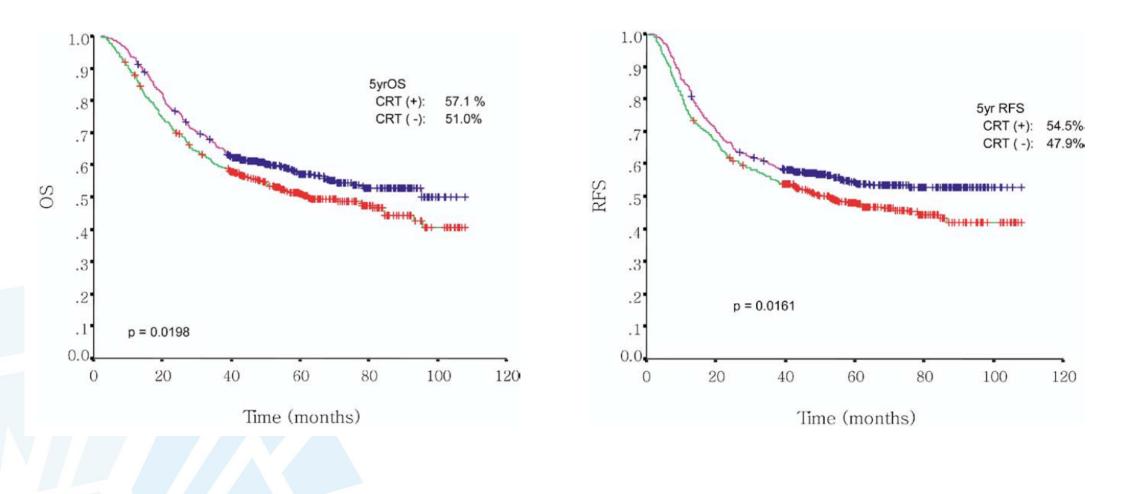
INT 0116:

- Significant improvement in overall survival and disease free survival
- Effect mainly on local failure rate (19 vs 29%)
- Acceptable toxicity
 - → New standard?

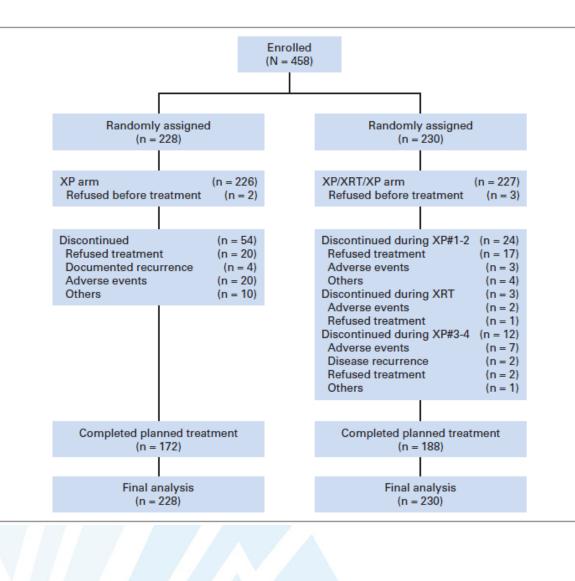
But:

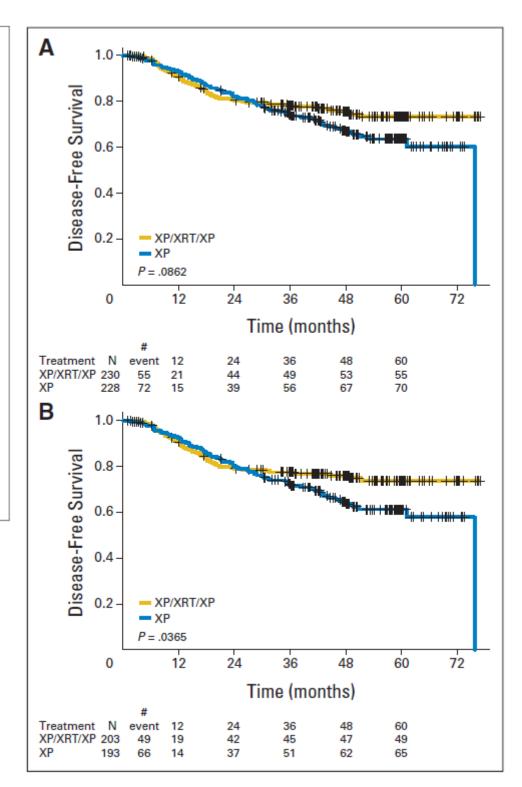

- Randomization after surgery
- No optimal surgery: 54% < D1 resection
- RT: careful planning experience!
- Chemotherapy regimen: not optimal
- Few patients in stage IB (n=39)
- Results not completely in agreement with what was expected on failure pattern

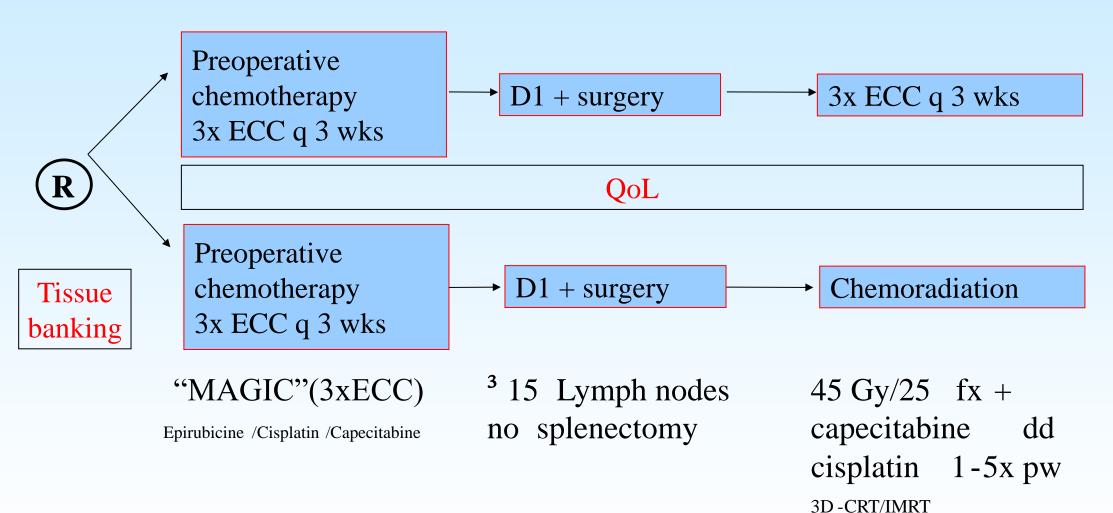
Drawbacks post-operative chemoradiation


- <u>35%</u> (!) of the RT treatment plans adjusted to avoid toxic effects on critical organs
- Still substantial major toxic effects
 - hematological: 54%
 - gastro-intestinal: 33%
- Only 64% completed postoperative treatment
- Costly treatment

Quality Control Radiotherapy


- 35% deviations from protocol
 - 10% potentially lethal errors
 - 9 heart in field
 - 9 both kidneys in field
 - 5 whole liver in field
- 20% excluding tumor bed
- 20% regional lymph nodes
- 10% anastomosis missed


Kim et al, Int J Rad Onc Biol Phys, 2005

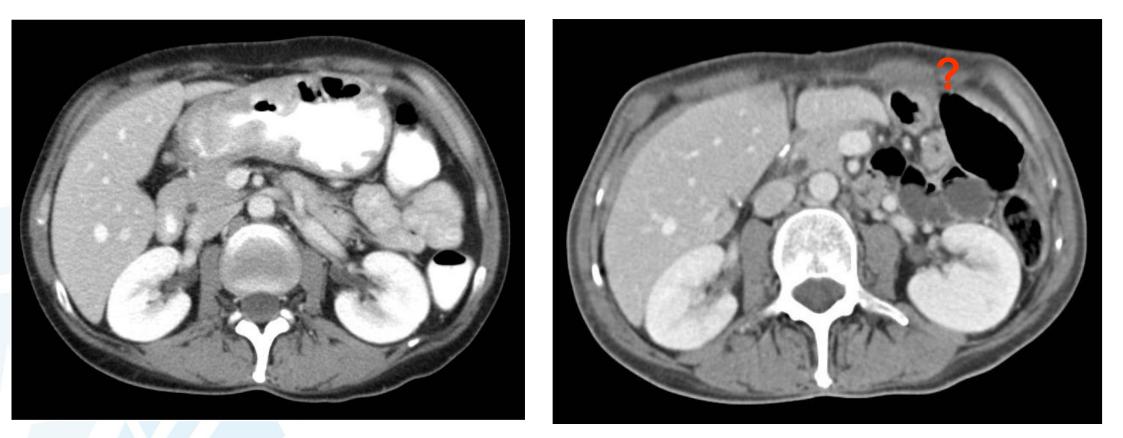

Kim et al, Int J Rad Onc Biol Phys, 2005

Lee et al, JCO 2012

CRITICS Design

Stratified for:

- Center
- Histological type
- Localisation of tumor


Overview

- Postoperative chemoradiotherapy
- Preoperative chemoradiotherapy
- Palliative radiation
- Technical aspects

Preoperative treatment

- Rationale/potential advantages
 - Enhance resectability
 - Assess response in primary tumour
 - Improve local control
 - Treat micrometastases early
 - Better tolerance than postoperative treatment
- Potential disadvantages
 - Staging less adequate
 - Increased postoperative morbidity
 - Disease progression

Pre-versus post-operative

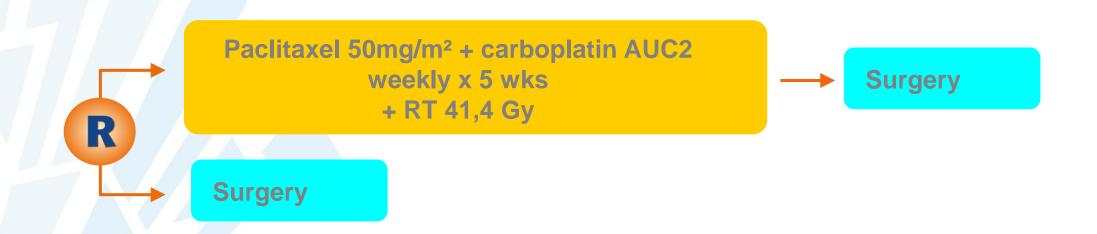
UICC TNM seventh edition (2009)

- The esophagus includes the GE- junction
- A tumor of which the epicentre is within 5 cm of the GE-junction and which extends into the esophagus is classified and staged as an esophageal tumor

Preop CRT vs Surgery 4188 patients

A	Chemoradiotherapy (total)	Surgery alone (total)		Hazard ratio (95% CI)
Nygaard ⁹	53	25		0.76 (0.45–1.28)
Apinop ³⁹	35	34	-	0.80 (0.48–1.34)
Le Prise ¹⁰	45*	41		0.85 (0.50–1.46)
Urba ⁴⁰	50	50	_	0.74 (0.48–1.12)
Bosset ¹²	148	145	_ _	0.96 (0.73–1.27)
Walsh (SCC) ¹³	29	32	_	0.74 (0.46–1.18)
Walsh (adenocarcinoma)14	58	55	_	0.58 (0.38-0.88)
Burmeister ²²	128†	128‡		0.94 (0.70–1.26)
Tepper ⁴³	30	26		0.35 (0.18-0.68)
Lv ⁴¹	80	80 -		0.55 (0.36-0.84)
Lee ¹⁷	51	50		0.88 (0.48-1.62)
Mariette ¹¹	97	98		1.09 (0.74–1.59)
van der Gaast ⁴²	176	188	_	0.67 (0.49-0.91)
Total	980	952	•	0.78 (0.70-0.88)
Heterogeneity: χ²=18·04, df=12 (p=	:0·11); <i>I</i> ² =33%			
Test for overall effect: Z=4·28 (p<0·	0001)	0·2 Favours chemo	0.5 1 2 oradiotherapy Favours surgery alo	5 ne

HR: 0.78 (95% CI 0.70-0.88); p<0.0001


Sjoquist et al., Lancet Oncol 2011

Tota Het Test Test HR SCC: 0.80 (95% CI 0.68-0.93); p=0.004 HR ADE: 0.75 (95% CI 0.59-0.95); p=0.02

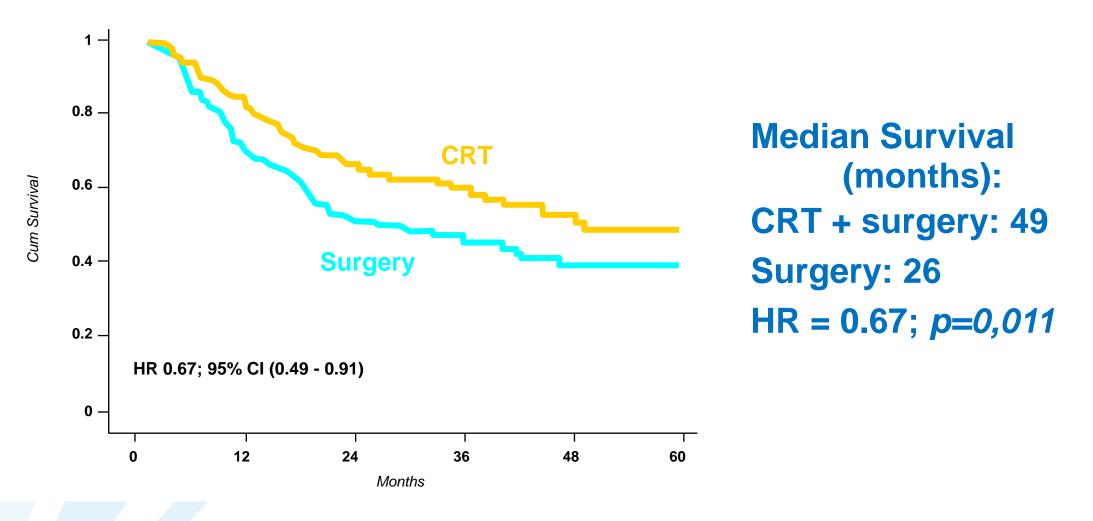
В	Chemoradiotherapy (total)	Surgery alone (total)	Hazard ratio (95% CI)
Squamous-cell carcinoma			
Nygaard ⁹	53	25	0.76 (0.45-1.28)
Apinop ³⁹	35	34	0.80 (0.48-1.34)
Le Prise ¹⁰	45	41	0.85 (0.50-1.46)
Urba ⁴⁰	13	12	- 0.83 (0.36-1.89)
Bosset ¹²	148	145	0.96 (0.73-1.27)
Walsh ¹³	29	32	0.74 (0.46-1.18)
Burmeister ²²	44	48	0.68 (0.40-1.15)
Lv ⁴¹	80	80	0.55 (0.36-0.84)
Lee ¹⁷	51	50	0.88 (0.48–1.62)
Subtotal	498	467	0.80 (0.68–0.93)
Heterogeneity: χ²=5·31, df=8 (p=0	0·72); I ² =0%	÷	
Test for overall effect: Z=2·90 (p=	0-004)		
Adenocarcinoma			
Urba ⁴⁰	37	38	0.69 (0.42–1.14)
Walsh ¹⁴	58	55	0.58 (0.38-0.88)
Burmeister ²²	80	77	0.94 (0.66–1.34)
Subtotal	175	170	0.75 (0.59-0.95)
Heterogeneity: χ²=3·11, df=2 (p=0	0·21); I ² =36%	-	
Test for overall effect: Z=2.40 (p=0	0-02)		
Combined results (pooled SCC a	nd adenocarcinoma)		
Tepper ⁴³	30	26	0.35 (0.18-0.68)
Mariette ¹¹	97	98	1.09 (0.74–1.59)
van der Gaast ⁴²	176	188	0.67 (0.49-0.91)
Subtotal	303	312	0.74 (0.59-0.93)
Heterogeneity: χ ² =9·09, df=2 (p=	-		
Test for overall effect: Z=2.62 (p=0	0.009)		
Total	976	949	0.77 (0.69-0.86)
Heterogeneity: χ²=17·87, df=14 (p	-		
Test for overall effect: Z=4.55 (p<0	-	0.2 0.5 1	2 5
Test for subgroup differences: $\chi^2 =$	0-35, df=2 (p=0-84), I ² =0%	Favours chemoradiotherapy Favour	s surgery alone

Resectable Esophageal or GE junction Cancer CROSS Study

- Resectable esophageal adenocarcinoma or SCC
- Stage II or III : T2-3/N0-1/M0 (CT scan + EUS + PET Scan)
- WHO PS 0-1, weight loss < 10%, T length < 8 cm
- Primary objective: Overall survival + QOL

Van der Gaast et al., ASCO 2010

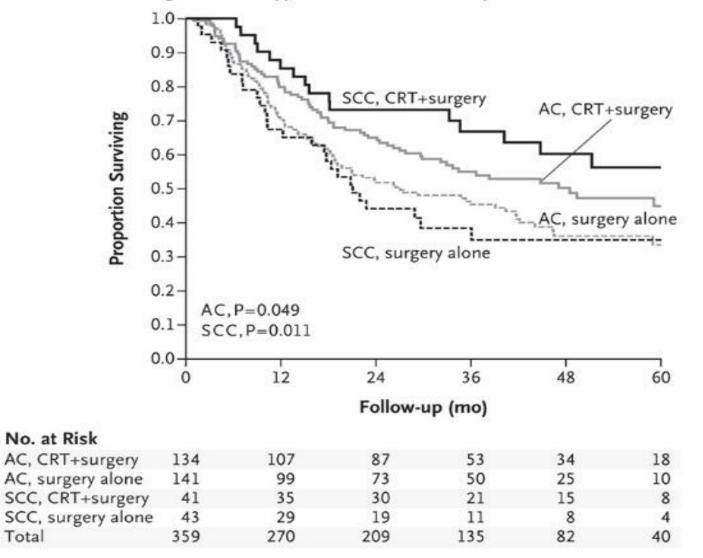
Resectable Oesophageal Cancer CROSS Study


Randomized Phase III study - Netherlands

	CRT + surgery	Surgery	р
n	175	188	
Median Age	60	60	
Histology SCC/Adeno (%)	23/74	23/74	
T3 N0 or N1 (%)	79		
Surgery (resection) (%)	90	86	
Postoperative mortality (%)	3,4	3,8	
RO Resection	92,3	67	< 0,002
pCR (%)	32	-	-

Van der Gaast et al., ASCO 2010

Resectable Oesophageal Cancer CROSS Study


Randomized Phase III study - Netherlands

Van der Gaast et al., ASCO 2010

CROSS study

B Survival According to Tumor Type and Treatment Group

van Hagen et al., NEJM 2012

CROSS study

Subgroup			Univariate Hazard Ratio (95% CI)	Adjusted Hazard Ratio (95% CI)	P Value for Adjusted Hazard Ratio
All patients	HHH		0.657 (0.495–0.871)	0.665 (0.500-0.884)	0.005
Sex					
Female	⊢ -∎		0.913 (0.482–1.729)	0.928 (0.487-1.766)	0.82
Male	⊢∎ -1		0.612 (0.446-0.841)	0.614 (0.447-0.845)	0.003
Histologic type					
Other			0.627 (0.056–6.970)		
Adenocarcinoma	H#H		0.732 (0.524–0.998)	0.741 (0.536-1.024)	0.07
Squamous-cell carcinoma	⊢ ∎1		0.453 (0.243-0.844)	0.422 (0.226-0.788)	0.007
Clinical N stage					
0			0.414 (0.234–0.732)	0.422 (0.239-0.747)	0.003
1	-∎-	4	0.793 (0.567-1.108)	0.807 (0.576-1.130)	0.21
Could not be determined		<u> </u>	0.552 (0.066-4.602)		
WHO performance score					
0	HH		0.617 (0.452-0.844)	0.625 (0.456-0.857)	0.004
1	⊢ ∎		0.864 (0.433-1.726)	0.898 (0.753-1.631)	0.77
0.01		.0 10.	0		
	Chemoradiotherapy and Surgery Better	Surgery Alone Better			

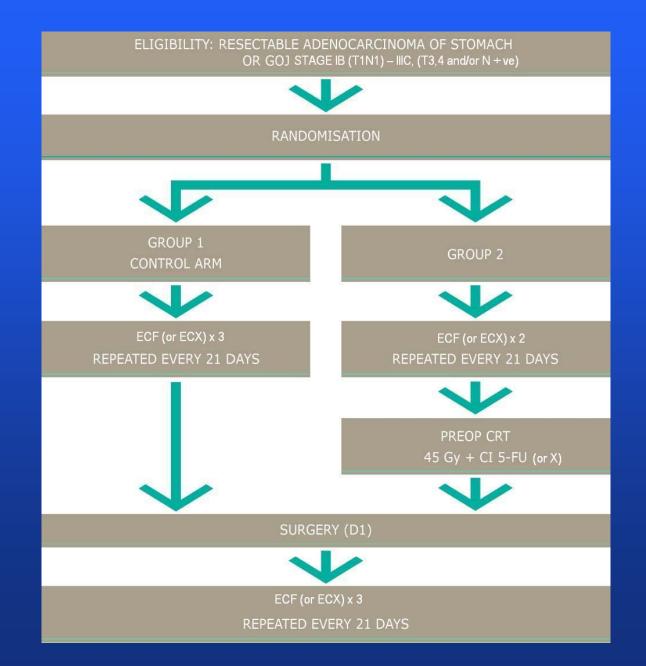
"Because a substantial percentage of patients in the chemoradiotherapy-surgery group in the present study (22%) had a GE-junction tumor, we favor preoperative chemoradiotherapy for such patients"

van Hagen et al., NEJM 2012

POET trial

	Α	rm A	Α	rm B	
Treatment	No.	%	No.	%	Ρ
Patients with resection	49	100.0	45	100.0	
pT0 N0 M0	1	2.0	7	15.6	.03*
pT1-4 N0 M0	17	34.7	22	48.9	
pT0-4 N0 M0†	18	36.7	29	64.4	.01*
pTall N M0	27	55.1	14	31.1	
pTall N M1	4	8.2	2	4.5	

Fisher's exact test.


†Bold text indicates data summarized from patients with pT0 N0 M0 and pT1-4 N0 M0.

Preoperative chemoradiotherapy

- RESPONDERS (30%-50%)
 - increased resectability rate
 - reduced locoregional recurrences
 - prolonged survival
- NON-RESPONDERS (50%-70%)
 - worse prognosis compared to surgery alone

Trial Schema

Study Design and Key Objectives

Study design:

This is a multicentre, prospective, randomised, stratified, phase II/III clinical trial

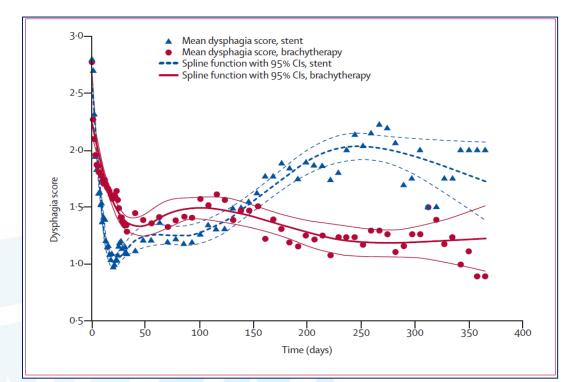
Primary objective:

To investigate whether the addition of chemoradiotherapy to chemotherapy is superior to chemotherapy alone in the neoadjuvant setting by improving pCR rates in the first instance (Part I), and subsequently overall survival (Part II), in patients undergoing adequate surgery (minimum D1 dissection) for resectable gastric and gastroesophageal junction cancer

Trial incorporates a QoL and a TR substudy

Statistical Considerations

Assumptions made for sample size calculations


- 5 y survival 40% for standard arm (chemotherapy alone)
- 5 y survival 50% for experimental arm (CRT)
- alpha=0.05 (2-sided)
- beta=0.80
- accrual rate approximately 140 patients per year

Target sample size = 752

Overview

- Postoperative chemoradiotherapy
- Preoperative chemoradiotherapy
- Palliative radiation
- Technical aspects

Palliative radiation

- 209 patients
- Inoperable
- 12 Gy SD vs stent
- BT more effect on dysphagia
- BT less complications
- QoL better after BT

Homs et al, Lancet 2004

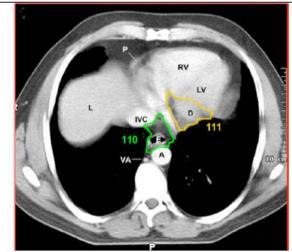
Overview

- Postoperative chemoradiotherapy
- Preoperative chemoradiotherapy
- Palliative radiation
- Technical aspects

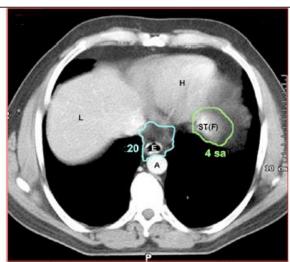
Technical aspects

- Total dose
- Dose per fraction
- Total treatment time

Targetvolume/OAR


Technique

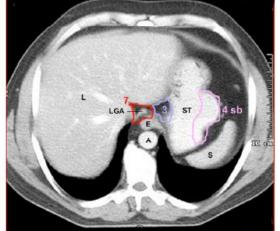
Radiation schedules used


- 35 Gy in 2.3 Gy fractions over 3 weeks
- 45 Gy in 1.5 Gy fractions over 3 weeks
- 40 Gy in 2.7 Gy fractions over 3 weeks
- 41.4 Gy in 1.8 Gy fractions over 5 weeks

THESE SCHEDULES CANNOT BE REGARDED AS STANDARD!

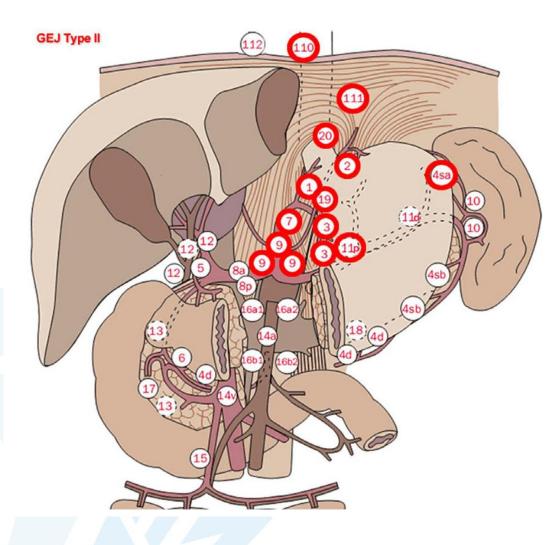
International and Japanese Gastric Cancer Association

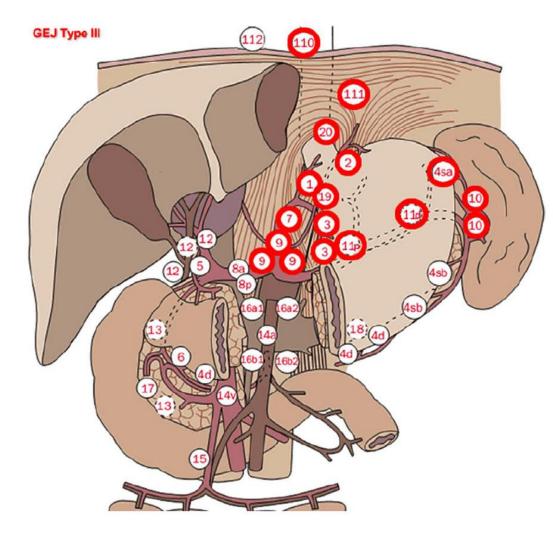

110 - Paraoesophageal LN111 - Supradiaphragmatic LN



20 - LN in the oesophageal hiatus of the diaphragm4sa - LN along the short gastric vessels

GEJ Type I


- 1 Right paracardial LN
- 2 Left paracardial LN
- 7 LN along the left gastric artery
- 9 LN around the celiac artery
- 19 Infradiaphragmatic LN
- 20 LN in the oesophageal hiatus of the diaphragm
- 110 Paraoesophageal LN in the lower thorax
- 111 Supradiaphragmatic LN
- 112 Posterior mediastinal LN

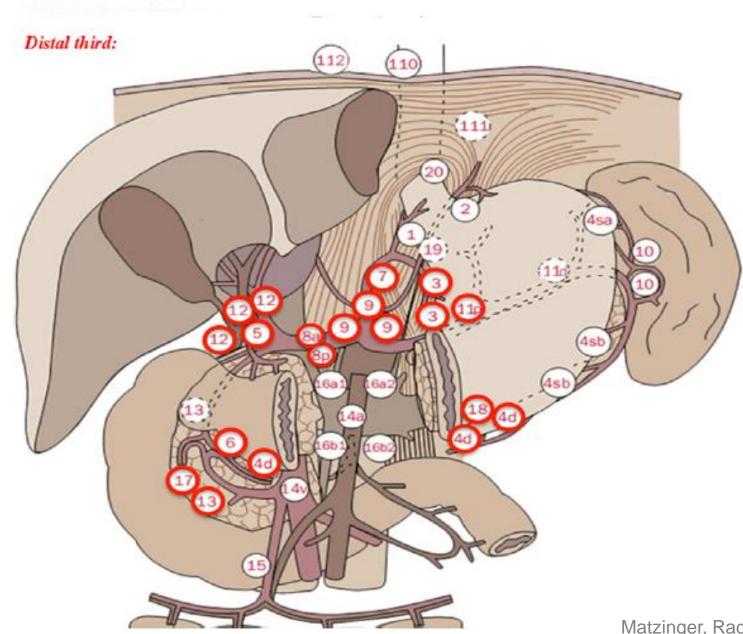


3 - LN along the lesser curvature4sb - LN along the left gastroepiploic vessels

7 - LN along the left gastric artery

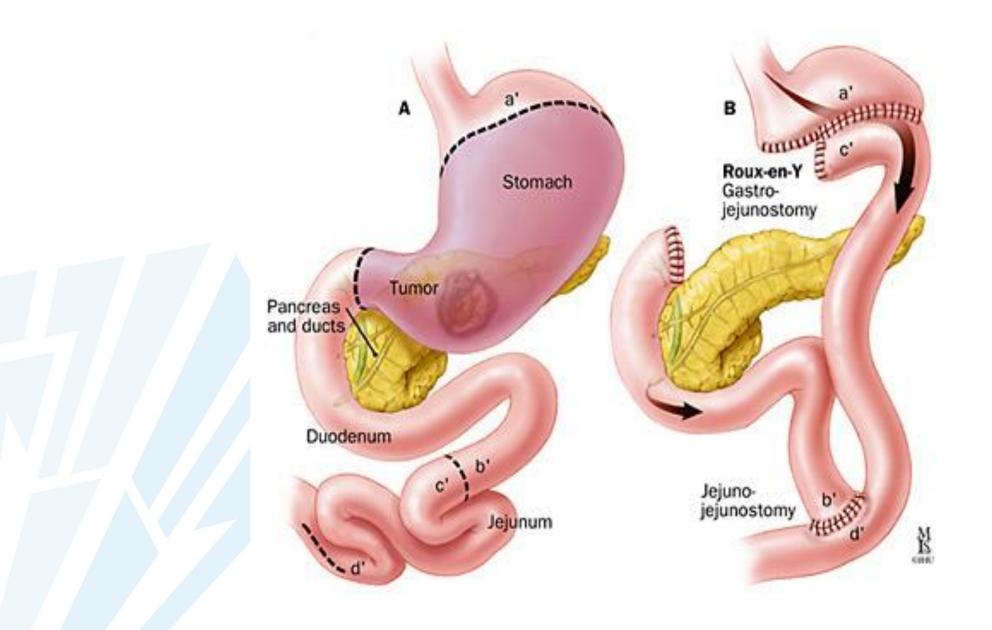
Radiotherapy for GE-junction tumors

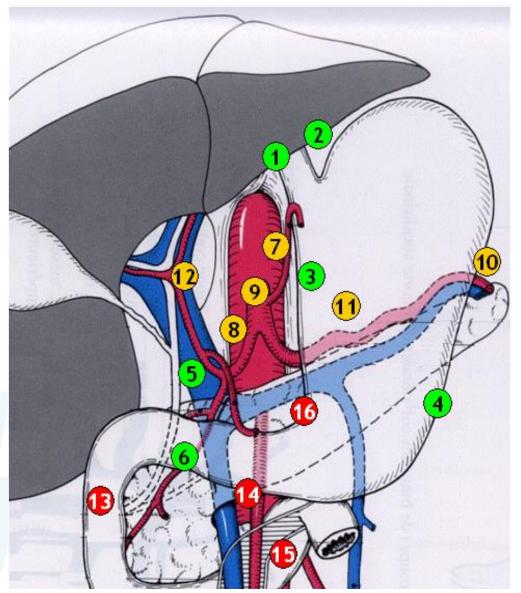
• Dose:


- Preoperative therapy: 40-45 Gy in 1,8-2,0 Gy/fraction in combination with chemotherapy
- Postoperative therapy: 45-50,4 Gy in fractions of 1,8 Gy combined with chemotherapy
- Maximum overall treatment time: 37 days

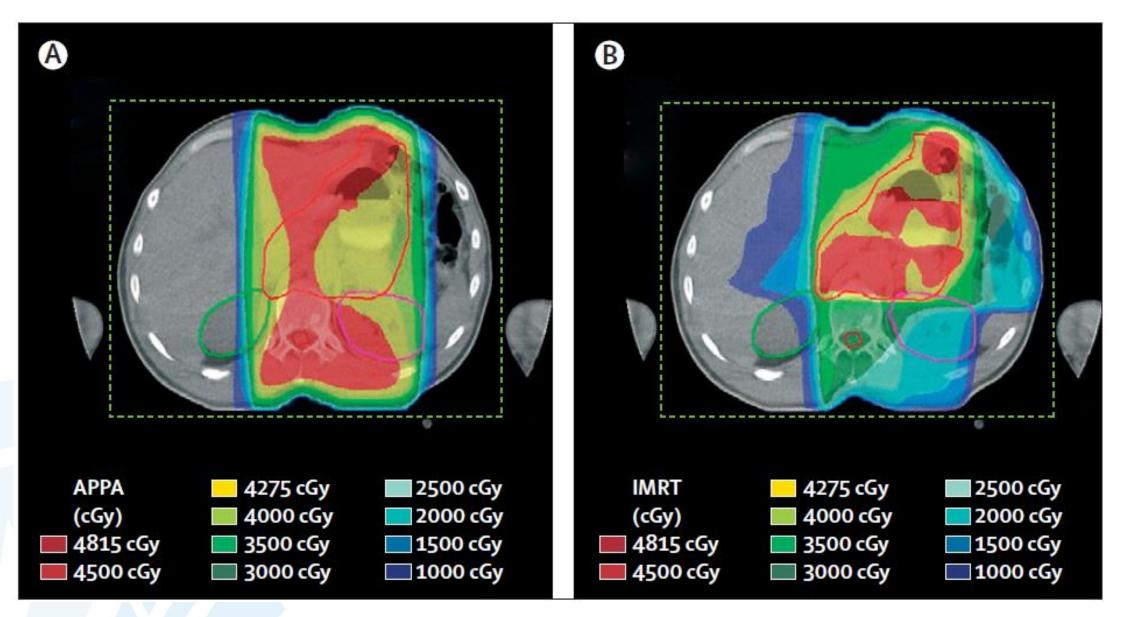
• Dose limiting critical structures:

OAR	Max. % volume to receive specified dose	Mean organ dose	Max. dose for partial organ irradiation	Maximum dose
Spinal cord				45 Gy
Liver		30 Gy	1/3 liver ≤50 Gy 2/3 liver ≤35Gy	
Kidneys		23 Gy	1/3 kidney ≤35Gy 2/3 kidney ≤20Gy	
Heart	V40 ≤30%			
Lungs	V20 ≤30%	18 Gy		


Matzinger, Radiother Oncol 2009


Lymph node regions at risk

Matzinger, Radiother Oncol 2009


The post-operative setting

1 right paracardial; 2 left paracardial; 3 lesser curvature; 4 greater curvature; 5 suprapyloric; 6 infrapyloric; 7 left gastric artery; 8 common hepatic artery; 9 celiac artery;10 splenic hilum;11 splenic artery; 12 hepatoduodenal ligament;13 posterior surface of the pancreatic head; 14 superior mesenteric vein/artery; 15 middle colic vessels;16: aorta.

Lymph node regions at risk

Hartgrink et al, Lancet 2009

3D vs. IMRT Comparison

"In general, V40 and V50 were kept to <50 and <30%, respectively, for the heart."

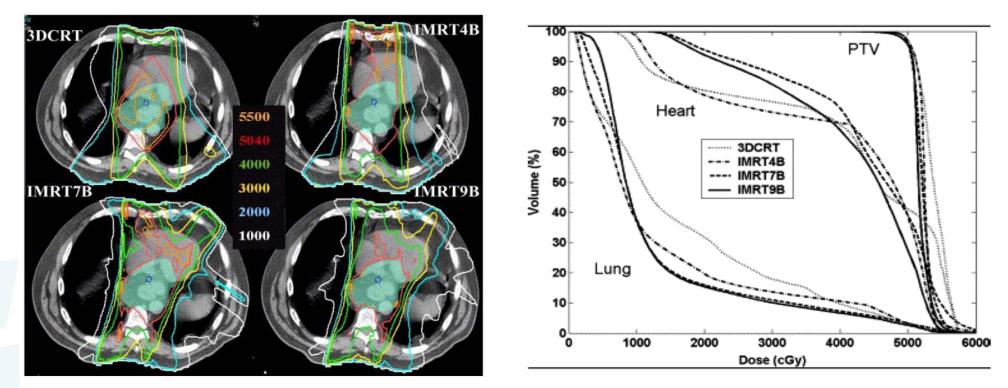
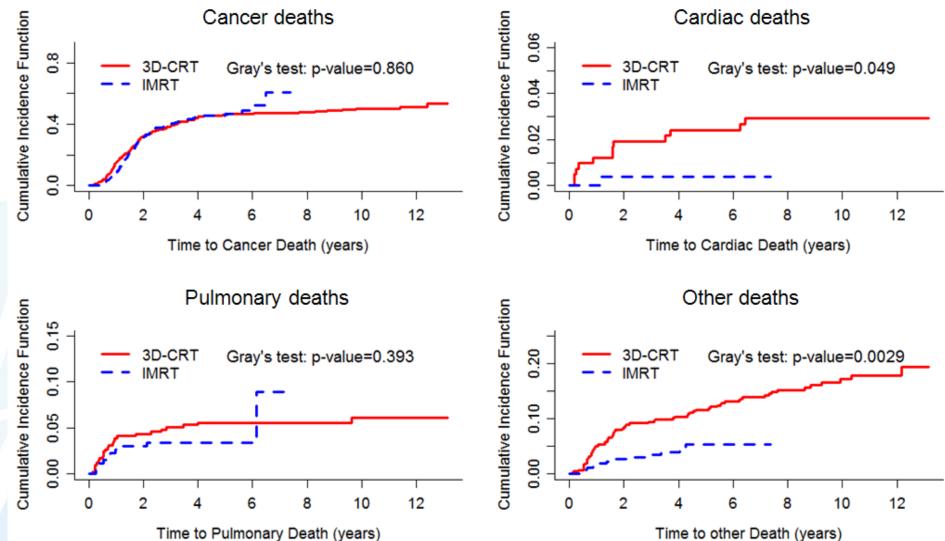


Fig. 1. Sample transverse CT images showing the isodose distributions in the middle of PTV for one of the cases studied.

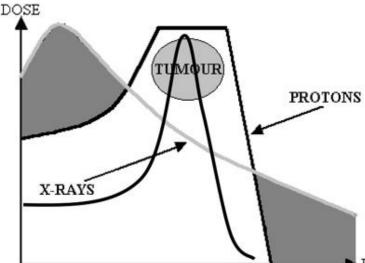
Fig. 2. DVHs from the 3DCRT and three IMRT plans for the case shown in Fig. 1.

"We gave PTV coverage and lung sparing higher priority than the other structures"

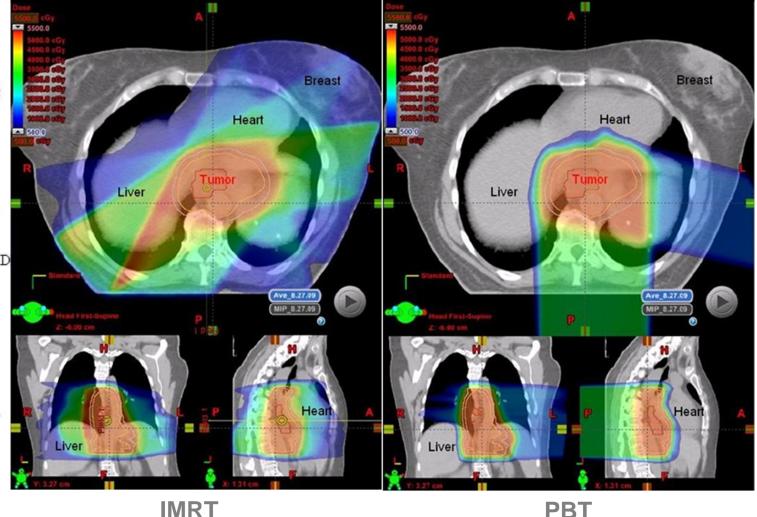

IMRT plans reduced the amount of lung treated compared to 3D-CRT "No clinically meaningful differences were observed with respect to irradiated volumes of spinal cord, heart, liver, or total body integral doses"

Chandra A, et. al, IJROBP 2005

Postoperative complications related to radiation dose to organ at risk


- Higher rates of postoperative pulmonary complications (ARDS, PNA) when large lung volumes receive low doses
 - Total Lung V10 ≥ 40% vs <40% : <u>35%</u> vs <u>8%</u> (p=0.014) (Lee HK et al. 2003)
 - NTCP modeling associated postoperative pulmonary complications to the amount of total lung spared from doses ≥ 5 Gy (Tucker SL et al., 2006)

IMRT has a lower incidence of cardiac and unknown related deaths



th (years)

How about protons?

Schematic depth dose diagram of a proton beam Bragg peak, the spread out Bragg peak and a megavoltage X-ray beam The grey shaded areas indicate the extent of dose reduction

Awaiting results from a RCT at MD Anderson

Stage II or III, Adenocarcinoma or SCCA, Age ≥ 65 vs. < 65.

Abbrevations: PROs = Patient Reported and Physician Reported Outcomes; TTB = Total Toxicity Burden form; IVR = Interactive Voice Response system; POCs = Postoperative Complications.

Conclusions GEJ cancer

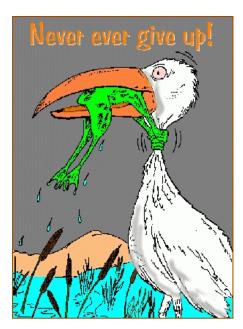
- Major tumor bulk in esophagus or tumors at transition (Siewert type 1 and 2):
- → Strategy of preoperative CRT
- Major tumor bulk in stomach (Siewert type 3):

Strategy of peri-operative CT awaiting results of Phase III trials

Level II evidence (CROSS/POET)

Conclusions gastric cancer

If sub-optimal surgery (<D1) or N+ disease


Consider (optimized) post-operative chemoradiation

Indications: (T2b), T3, T4 or N+ M0

Level II evidence (INT0116/ARTIST)

Conclusions

- A multidisciplinary approach is essential in the treatment of this disease!
 - Which type of treatment?
 - Which drugs?
 - Which total dose of radiation/fractionation?
 - Which volumes to irradiate?

YOUR SKILL AND COMMITMENT DESERVE RECOGNITION. JOIN ESMO: THE EUROPEAN REFERENCE FOR ONCOLOGY.

For more information about ESMO please visit esmo.org