

European Society for Medical Oncology

PERSONALISED MEDICINE SYMPOSIUM

The genomic landscape of RAS-driven tumours

Aldo Scarpa

ARC-NET Research Centre

and Department of Pathology and Diagnostics University of Verona, Italy

Barcelona, Spain 13-14 March 2015

DISCLOSURE

No conflicts of interest to declare

ESMO Signalling Pathways 2015

GLOBOCAN Projection for 2030 in Europe

GLOBOCAN 2012 (IARC)

RAS-mutated

OUTLINE

- 1. RAS family members and their mutations
- 2. Prognostic and predictive role of RAS mutations
- 3. Downstream to RAS
- 4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

OUTLINE

1. RAS family members and their mutations

- 2. Prognostic and predictive role of RAS mutations
- 3. Downstream to RAS
- 4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

RAS-oncogenic mutations from COSMIC catalogue

Incidence per year in USA of RAS mutations in human cancers

Primary Tissue	KRAS (%)	HRAS (%)	NRAS (%)	Total (%)	
Pancreas	71	0	<1	71 95	5%
Colon	35	1	6	42 45	5%
Small intestine	35	0	<1	35	
Biliary tract	26	0	2	28 45	5%
Endometrium	17	<1	5	22	
Lung	19	<1	1	20 35	5%
Skin (melanoma)	1	1	18	20	
Cervix	8	9	2	19	
Urinary tract	5	10	1	16	

Stephen AG, Cancer Cell 25, March 17, 2014

RAS family oncogenic mutations from COSMIC catalogue

Incidence per year in USA of RAS mutations in human cancers

Primary Tissue	KR,	AS (%)	HRAS (%) NRAS (%)	Tota	· ,
Pancreas	71		0	<1	71	95%
Colon	35		1	6	42	45%
Small intestine	35		0	<1	35	
Biliary tract	26		0	2	28	45%
Endometrium	17		<1	5	22	
Lung	19		<1	1	20	35%
Skin (melanoma)	1		1	18	20	
Cervix	8		9	2	19	
Urinary tract	5		10	1	16	

Stephen AG, Cancer Cell 25, March 17, 2014

KRAS-oncogenic mutations from COSMIC catalogue

Incidence per year in USA of *KRAS* mutations in human cancers

	All KRAS	G12C	G12D	G12V	G13D	
Colorectal	60,000	5,700	25,000	15,700	13,600	
Lung	45,600	23,000	9,200	11,900	1,500	
Pancreas	32,200	1,000	19,500	11,500	200	
Total new cases/year	137,800	29,700	53,700	39,100	15,300	

Stephen AG, Cancer Cell 25, March 17, 2014

RAS family codon mutations

ESVO

Prior IA, Cancer Res . 2012 May 15; 72(10)

Lung Carcinoma

Mucinous Adenocarcinoma

KRAS mutation: histotype association

East Asian Lung Carcinoma

Hu H, Onco Targets Ther. 2014 Aug 13;7

KRAS mutation: histotype drives diagnostic workflow

Hu H, Onco Targets Ther. 2014 Aug 13;7

OUTLINE

- 1. RAS family members and their mutations
- 2. Prognostic and predictive role of RAS mutations
- 3. Downstream to RAS
- 4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

KRAS mutations: Prognostic significance Colorectal Cancer

Codon 12 mutations associated with shorter TTP

Blons H, Ann Oncol. 2014 Dec; 25(12)

312 resected stage I cancers

312 resected stage I cancers

KRAS mutation: the only independent predictor of shorter OS (p = 0.001) and DFS (p < 0.0001) at multivariate analysis.

312 resected stage I cancers

312 resected stage I cancers

OUTLINE

- 1. RAS family members and their mutations
- 2. Prognostic and predictive role of RAS mutations
- 3. Downstream to RAS
- 4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

Advanced Lung Cancer: anti EGFR prediction

KRAS status does not affect response

	EGFR + / KRAS WT	EGFR WT / KRAS +	EGFR WT / KRAS WT		
Ν	47	41	83	Р	
RR	68%	0	5%	< .001	
Median TTP (months)	13.1	3.3	3.1	< ,0001	
Median OS	24,5	13.0	11.8	.002	

Jackman et al, Clin Cancer Res. 2009

Locally Advanced Lung Cancer: anti EGFR prediction

Erlotinib is detrimental in KRAS mutated

ESV0

Eberhard, JCO 2005

Early Stage Resected Lung Cancer: anti EGFR prediction

KRAS status cannot be recommended to select patients for adjuvant chemotherapy

Shepherd JCO 2013

Colorectal Cancer: molecular classification

- KRAS mutated
- NRAS mutated
- PIK3CA mutated
- RAF mutated
- Quadruple-negative

Dienstmann et al. 2014 ASCO Educational Book

New scenarios in EGFR targeting in CRC THE LANCET Oncology

Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis

Wendy De Roock MD a, Bart Claes MSc b, David Bernasconi MSc c, Jef De Schutter MSc a, Bart Biesmans MSc a, Prof George

1022 tumours treated with cetuximab

KRAS	40%
BRAF	5%
NRAS	3%
РІКЗСА	15% (4% ex 20)

are significantly associated with a low response rate

De Roock et al, The Lancet Oncology 11: 753 – 762, 2010

Colorectal Cancer: anti EGFR prediction

KRAS-G13D respond to Cetuximab as Wild Type tumors

Figure 1. Overall Survival: Predictive Analysis by KRAS Status for Patients Receiving Any Cetuximab-Based Therapy vs No Cetuximab

The no cetuximab group for all patients from the pooled data set is the best supportive care group from the CO.17 trial.

De Roock W, JAMA. 2010;304(16)

Colorectal Cancer: anti EGFR prediction

Dienstmann et al. 2014 ASCO Educational Book

OUTLINE

- 1. RAS family members and their mutations
- 2. Prognostic and predictive role of RAS mutations

3. Downstream to RAS

4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

The landscape of RAS-driven pathway

Downward J., Nature Reviews, Cancer; Vol 3, January 2003

Mechanism of resistance

RAF FAMILY

Wellbrock C, Nat Rev Mol Cell Biol. 2004 Nov;5(11)

BRAF mutations:

- Melanoma
- Non-small cell lung cancer
- Colorectal cancer
- Bile duct cancer
- Hairy-cell leukemia

Original assignment	Correct assignment	Comments
M116	M117	Mutated in cancer
R187	R188	Equivalent of R89 in C-RAF where it is required for RAS binding
1325	1326	Mutated in cancer
S364	S365	Phosphorylation site, possibly by AKT/PKB and PKA; forms core of 14-3-3 binding motif
S428	S429	AKT/PKB phosphorylation site
K438	K439	Mutated in cancer
T439	T440	AKT/PKB phosphorylation site; mutated in cancer
S445	S446	N-region phosphorylation site; equivalent to S338 of C-RAF
D448	D449	Equivalent of Y341 of C-RAF
V458	V459	Mutated in cancer
R461	R462	Mutated in cancer
1462	1463	Mutated in cancer
G463	G464	First glycine of the glycine-rich loop; mutated in cancer
G465	G466	Second glycine of the glycine-rich loop; mutated in cancer
F467	F468	Mutated in cancer
G468	G469	Third glycine of the glycine-rich loop; mutated in cancer
K474	K475	Mutated in cancer
N580	N581	Catalytic asparagine; mutated in cancer
E585	E586	Mutated in cancer
D586	D587	Mutated in cancer
D593	D594	Aspartic acid of the 'DFG' motif; mutated in cancer
F594	F595	Phenylalanine of the 'DFG' motif; mutated in cancer
G595	G596	Glycine of the 'DFG' motif; mutated in cancer
L596	L597	Mutated in cancer
T598	T599	Activation segment phosphorylation site; mutated in cancer
V599	V600	Most commonly mutated residue in cancer
K600	K601	Mutated in cancer
S601	S602	Activation segment phosphorylation site
R681	R682	Mutated in cancer
A727	A728	Located within C-terminal 14-3-3 binding motif; mutated in cancer
S728	S729	Phosphorylation site and core of 14-3-3 binding motif

Table 1 | Correct numbering of the important amino acids in B-RAF

Wellbrock C, Nat Rev Mol Cell Biol. 2004 Nov;5(11)

Beyond BRAF mutations: translocations

38 cutaneous spitzoid lesions

Wiesner T, Nat Commun. 2014;5:3116

Beyond BRAF mutations: amplification/fusion genes

44 pilocytic astrocytomas

Jones DTW, Cancer Res . 2008 November 1; 68(21)

Beyond BRAF mutations: amplification/fusion genes

Jones DTW, Cancer Res . 2008 November 1; 68(21)

Wan PT, Cell. 2004 Mar 19

C-RAF (Raf-1): there is more than MEK activation

Lito P, Cancer Cell 25, 697–710, May 12, 2014

Allosteric MEK-Inhibitor

ESMO

Lito P, Cancer Cell 25, 697–710, May 12, 2014

CRAF

Stronger Allosteric MEK-Inhibitor

Lito P, Cancer Cell 25, 697–710, May 12, 2014

ARAF

ARAF independent

RAFi-mediated ERK1/2 activation needs CRAF in RAS mutated cells

ARAF dependent

RAFi-mediated ERK1/2 activation needs ARAF in a cell type-dependent manner

Mooz J, Science Signaling 7 (337), ra73

OUTLINE

- 1. RAS family members and their mutations
- 2. Prognostic and predictive role of RAS mutations
- 3. Downstream to RAS
- 4. RAS is guilty but he is not the only one

ESMO Signalling Pathways 2015

RAS-networking

ING CH.

@2009_JAMESBURKS

Not a "one man band"

BURT BURT

BLIRP

TING

ING

TING

www.quiagen.com

LETTER

The mutational landscapes of genetic and chemical models of *Kras*-driven lung cancer

Peter M. K. Westcott^{1,2}, Kyle D. Halliwill^{1,2}, Minh D. To¹, Mamunur Rashid³, Alistair G. Rust³, Thomas M. Keane³, Reyno Delrosario¹, Kuang-Yu Jen⁴, Kay E. Gurley⁵, Christopher J. Kemp⁵, Erik Fredlund⁶, David A. Quigley¹, David J. Adams³ & Allan Balmain^{1,7}

LETTER

The mutational landscapes of genetic and chemical models of *Kras*-driven lung cancer

Peter M. K. Westcott^{1,2}, Kyle D. Halliwill^{1,2}, Minh D. To¹, Mamunur Rashid³, Alistair G. Rust³, Thomas M. Keane³, Reyno Delrosario¹, Kuang-Yu Jen⁴, Kay E. Gurley⁵, Christopher J. Kemp⁵, Erik Fredlund⁶, David A. Quigley¹, David J. Adams³ & Allan Balmain^{1,7}

Lung cancer

Nature. 2008 October 23; 455(7216): 1069-1075. doi:10.1038/nature07423.

Somatic mutations affect key pathways in lung adenocarcinoma

Li Ding^{1,*}, Gad Getz^{2,*}, David A. Wheeler^{3,*}, Elaine R. Mardis¹, Michael D. McLellan¹, Kristian Cibulskis², Carrie Sougnez², Heidj Greulich^{2,4}, Donna M. Muzny³, Margaret B. Morgan³, Lucinda Fulton¹, Robert S. Fulton¹, Qunyuan Zhang⁵, Michael C. Wendl¹, Michael S. Lawrence², David E. Larson¹, Ken Chen¹, David J. Dooling¹, Aniko Sabo³, Alicia C. Hawes³, Hua Shen³, Shalini N. Jhangiani³, Lora R. Lewis³, Otis Hall³, Yiming Zhu³, Tittu Mathew³, Yanru Ren³, Jiqiang Yao³, Steven E. Scherer³, Kerstin Clerc³, Ginger A. Metcalf³, Brian Ng³, Aleksandar Milosavljevic³, Manuel L. Gonzalez-Garay³, John R. Osborne¹, Rick Meyer¹, Xiaoqi Shi¹, Yuzhu Tang¹, Daniel C. Koboldt¹, Ling Lin¹, Rachel Abbott¹, Tracie L. Miner¹, Craig Pohl¹, Ginger Fewell¹, Carrie Haipek¹, Heather Schmidt¹, Brian H. Dunford-Shore¹, Aldi Kraja⁵, Seth D. Crosby¹, Christopher S. Sawyer¹, Tammi Vickery¹, Sacha Sander¹, Jody Robinson¹, Wendy Winckler^{2,4}, Jennifer Baldwin², Lucian R. Chirieac^{6,7}, Amit Dutt^{2,4}, Tim Fennell², Megan Hanna^{2,4}, Bruce E. Johnson⁴, Robert C. Onofrio², Roman K. Thomas^{8,9}, Giovanni Tonon⁴, Barbara A. Weir^{2,4}, Xiaojun Zhao^{2,4}, Liuda Ziaugra², Michael C. Zody², Thomas Giordano¹⁰, Mark B. Orringer¹¹, Jack A. Roth¹², Margaret R. Spitz¹³, Ignacio I. Wistuba^{12,14}, Bradley Ozenberger¹⁵, Peter J. Good¹⁵, Andrew C. Chang¹¹, David G. Beer¹¹, Mark A. Watson¹⁶, Marc Ladanyi^{17,18}, Stephen Broderick¹⁷, Akihiko Yoshizawa¹⁷, William D. Travis¹⁷, William Pao^{17,18}, Michael A. Province⁵, George M. Weinstock¹, Harold E. Varmus¹⁹, Stacey B. Gabriel², Eric S. Lander², Richard A. Gibbs³, Matthew Meyerson^{2,4}, and Richard K. Wilson¹

Ding et al. Nature 2008, 455:1069-75

Number of mutations

40

50

60

70-

30

20

0

TP53 KRAS STK11 EGFR LRP1B NF1 ATM

26 significantly mutated genes in lung adenocarcinomas

Lung cancer

L Ding et al. Nature 455, 1069-1075 (2008)

Lung cancer

Each cancer holds from 4 to 29 mutated genes

Ding et al. Nature 2008, 455:1069-75

Lung cancer

Concurrent and mutual exclusion of mutations

Ding et al. Nature 2008, 455:1069-75

Mutations Copy number alterations

Comprehensive molecular characterization of human colon and rectal cancer. The Cancer Genome Atlas Network Nature 2012, 487:330-7:

Colorectal cancer

32 somatic recurrently mutated genes

15 17 81% b Hypermutated tumours Non-hypermutated tumours 80. Mutation frequency (%) 80% 51% 51% 60 46% 43% 40% 40% 31% 31% 40 31% 29% 29% 29% 26% 26% 18% 20-80,82, pt 43,46,18,12,28,21 812 ROBART CAN DA

Comprehensive molecular characterization of human colon and rectal cancer. The Cancer Genome Atlas Network Nature 2012, 487:330-7:

Lung cancer

Mutated pathways in lung adenocarcinomas

Ding et al. Nature 2008, 455:1069-75

Colorectal cancer

Comprehensive molecular characterization of human colon and rectal cancer. The Cancer Genome Atlas Network Nature 2012, 487:330-7:

Pancreas cancer

Cowley MJ, J Hepatobiliary Pancreat Sci (2013) 20

Pancreas cancer

Pancreas

Pancreas cancer

Pancreas cancer

Targetting-Ras...dream or reality?

