

Recent drugs: Trabectedin

Maurizio D'Incalci, MD IRCCS – Istituto di Ricerche Farmacologiche Mario Negri

Disclosure slide

- Receipt of grants / research supports:
 Pharma Mar
- Receipt of honoraria or consultation fees: Pharma Mar

 Trabectedin binds to the minor groove and bends DNA towards the major groove

Zewail-Foote Chem Biol. 2001; 8(11): 1033–49

Clinical Development of Trabectedin in STS

Study	Reference	Regime	Types of tumours	n		
Single Arm Study	Le Cesne 2005 ¹	• 1.5 mg/m² 24-hr q3wk	STS, liposarcoma, leiomyosarcoma, synovial sarcoma, malignant fibrous histiocytoma, neurosarcoma, others	104		
Single Arm Study	Yovine 2004 ²	• 1.5 mg/m² 24-hr q3wk	STS, leiomyosarcoma, liposarcoma, GIST, synovial sarcoma, malignant fibrous histiocytoma, fibrosarcoma, others	54	Si	ոք (P
Single Arm Study	García Carbonero 2004 ³	• 1.5 mg/m² 24-hr q3wk	STS, liposarcoma, leiomyosarcoma, malignant Schwannoma	36		
Randomised study	Demetri 2009	 1.5 mg/m² 24-hr q3wk 0.58 mg/m² 3-hr qwk for 3 out weeks 	Liposarcoma and leiomyosarcoma	270	R	an

Real Life Data Trabectedin Worldwide Expanded Access

Samuels et al., Annals of Oncology 2013;00:1-7

Clinical patterns of response to Trabectedin

Pre-treatment

Cycle 1

Cycle 11

Adapted from Grosso et al, 2007

Pre-treatment

Cycle 2

Relapse week 158

Adapted from Charytonowicz et al, 2012

Trabectedin's Complex MoA

DNA Damaging

- Inducing DSB and Apoptosis
- Enhanced by BRCA deficiency, NER proficiency

Modified Transcription

- Interaction with Transcription Factors
- Inducing Adipogenic Differentiation in RC/MLPS
- Open pathway for drug combinations

Tumor Microenvironment (TME)

- Selectively targeting Monocytes and Tumor Macrophages
- Shifting TME to pro-inflammatory & Antiangiogenic profile
- TME mediated anti-tumor activity

Trabectedin's Complex MoA

DNA Damaging

- Inducing DSB and Apoptosis
- Enhanced by BRCA deficiency, NER proficiency

Trabectedin binds to the DNA minor groove

Adapted from Gago; Small Molecule DNA and RNA Binders, 2004.

Trabectedin and DNA repair

Activity in cells defective in:

	Mismatch repair	Nucleotide excision repair	Homologous recombination repair
UV		$\uparrow \uparrow \uparrow \uparrow \uparrow$	
γIR			$\uparrow \uparrow \uparrow \uparrow \uparrow$
Platinum complexes	\downarrow	^^^	^
Trabectedin	↑/-	$\downarrow \downarrow \downarrow \downarrow \downarrow$	111

Sensitivity to Trabectedin increased by defects in HR repair

Sensitivity to trabectedin of different isogenic cell lines (colony assay)

BRCA1 haplotype may be predictive of trabectedin efficacy

• Sarcoma patients carrying BRCA1 mutation "AAAG" respond better to trabected in.

 Could be easily translated into routine clinical practice pending on results of prospective validation study.

Study Population							
	Training cohort (n=62)	Validation cohort (n=73)					
Median age (years)	49	56					
Range	18-74	21-78					
Sex							
Male	29	29					
Female	33	44					
Histological subtype							
Liposarcoma	18	9					
MRCL	10	4					
Other	8	5					
Leiomyosarcoma	18	34					
Synovial sarcoma	10	11					
Unclassified	10	5					
Other	6	14					
Histological grade							
Grade 1	3	0					
Grade 2	13	19					
Grade 3	32	31					
Unknown	14	23					

Clinical response to Trabectedin influence d by BRCA profile

- 245 tumor samples were retrospectively collected from sarcoma patients treated with single agent trabected in in the context of a compassionate use program
- Significant differences in PFS and OS detected for patients with high XPG and low BRCA1 expression treated with trabected in
- BRCA1 deficiency and XPG proficiency enhanced clinical responses to trabectedin

Schöffsky et al. Eur J Cancer 4 7 (2 0 1 1) 1 0 0 6 –1 0 1 2 .

Trabectedin's Complex MoA

Modified Transcription

• Interaction with Transcription Factors

- Inducing Adipogenic Differentiation in RC/MLPS
- Open pathway for drug combinations

Displacement of proteins from DNA

Trabectedin causes the detachment of FUS-CHOP from the promoter regions of its target genes in *in vitro* models

ChIP from untreated cells and treated with 2nM of trabectedin for 1 hour with α -CHOP, α -FUS, α -Flag (Ctrl) antibodies. Two promoters were evaluated in quantitative Real Time PCR analysis. Values are reported as fold enrichment over anti-Flag antibody.

Pre-treatment

Post-treatment 6 doses of ET

В

Human Surgical Specimen

FUS-CHOP Type II

Trabectedin induces antitumor response associated to adipocytic maturation and antiangiogenic effects in type I/II, but not in type III myxoid liposarcoma

Giandomenico et al, Oncogene 2013

Doxorubicin is very effective, but PPARg2 (marker of adipocytic differentiation) is not induced and the vascular effect is not as evident as that of trabectedin

Trabectedin shows the unique property to displace an oncogenic transcription factor from its target promoters in a selective fashion

Trabectedin causes downregulation of Werner syndrome (WRN) gene by inhibiting EWS-FLI1 transactivating ability in Ewing sarcoma cells

It is known that cells deficient in WRN syndrome are very sensitive to topoisomerase I inhibitors.

Grohar et al, Clin. Cancer Res., e-pub 2013

The sequential treatment of trabectedin and irinotecan is a highly effective regimen in Ewing sarcoma xenografts regardless their sensitity to each drug given alone

Grohar et al, Clin. Cancer Res., e-pub 2013

Trabectedin's Complex MoA

Tumor Microenvironment (TME)

- Selectively targeting Monocytes and Tumor Macrophages
- Shifting TME to pro-inflammatory & Antiangiogenic profile
- TME mediated anti-tumor activity

Tumors are organ-like structures

Disappearance of vascular pattern after Trabectedin

Pre-treatment

Cycle 4

Immunostaining for CD31

Adapted from Grosso et al, 2007.

TAM early and relevant inflammation promoters

The number of Tumor-Associated Macrophages (TAM) significantly correlates with tumor progression in a number of human tumors:

- Advanced tumor stage
- Shorter disease-free survival
- Resistance to chemotherapy and anti-angiogenic therapy

TAM are decreased after trabectedin

Germano et al, Cancer Cell 2013

Trabectedin resistant fibrosarcoma cells (mouse)

Tumors originated in mice using cells resistant to trabectedin

Cancer cells remain resistant, but the tumor responds to trabected in in vivo

Germano et al, Cancer Cell 2013

Decreased angiogenesis in trabectedin-treated tumors

TAM and vessels are reduced in treated STS patients

CD31 vessels

- * PRE: biopsy before surgery;
- ** POST: tumor sample at surgery, after therapy

Multifunctional therapeutic targets

AdaptedfromHanahan& Weinberg, Cell 2011

Conclusions

- Trabectedin is the first compound that is able to target an oncogenic transcription factor with high selectivity.
- The antitumor activity of trabectedin seems to be related to direct effects on cancer cells with induction of growth inhibition cell death and differentiation and indirect effects related to its anti-inflammatory and anti-angiogenic properties.
- The effects on tumor microenvironment are in keeping with the pattern of response observed in several patients, i.e. a delayed response with a prolonged stabilization (tumor dormancy).
- Studies are in progress to define whether and at which extent the biological characterization of the tumors will allow to select patients who can benefit more from trabected in treatment, alone or in combination with other drugs.

Acknowledgements

Istituto Mario Negri

Roberta Frapolli Eugenio Erba Massimo Zucchetti Giulia Taraboletti Raffaella Giavazzi Sergio Marchini Ilaria Fuso Nerini Sarah Uboldi Silvana Di Giandomenico

Istituto Tumori Milano

Paolo Casali Alessandro Gronchi Federica Grosso Roberta Sanfilippo Silvana Pilotti Andrea Anichini

Istituto Clinico Humanitas

Paola Allavena Giovanni Germano Achille Anselmo Samantha Pesce Federica Marchesi Alberto Mantovani

Università degli Studi di Milano Roberto Mantovani

Istituto Europeo di Oncologia

Filippo De Braud Nicoletta Colombo

Pharma Mar Nadia Badri Carlos Galmarini Claudia Rigamonti Cristina Scanavini