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100 YEARS OF CANCER GENETICS
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Cancer Genome Consortia

OVERALL GOALS

- characterization of the whole spectrum of genomic/genetic alterations
within single tumors and across tumor types

- discrimination btw relevant and irrelevant mutations (drivers vs passengers)
- identification of prominent pathways involved in cancer

- identification of patterns that underpin specific cancer phenotypes
(clonal evolution, histology, aggressiveness, resistance/sensitivity to therapies ...)

- identification of potentially “actionable” molecules and mutation moieties

- pave the way to individualized treatments

based on the genetic portrait of tumor and patient



N

Genetic/genomic/epigenetic Patient risk stratification
profile Personalized treatment

Cycle of
personalized
cancer medicine

V.,

Further investigations

Improved diagnostic, prognostic
therapeutic, monitoring approaches



The
NGS REVOLUTION

How did it start and
where are we now?



1st generation sequencing
Sanger Sequencing
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1st generation sequencing
Sanger Sequencing
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1st generation sequencing
Sanger Sequencing
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1st generation sequencing 2nd generation sequencing
Sanger Sequencing Massively Parallel Sequencing
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1st generation sequencing 2nd generation sequencing
Sanger Sequencing Massively Parallel Sequencing
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1st generation sequencing 2nd generation sequencing
Sanger Sequencing Massively Parallel Sequencing
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Data Pre-precessing >> Variant Discovery >> Preliminary Analyses

[ Roaus ] vund AnalysisReady | Analysis-Ready SNPs
1 Reads Variants & Indels
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: s o
@ : v :
c : q q q H
_2 Mark Duplicates : [ Joint Variant Calling ] : Genotype
: ! : Refinement
: | :
Indel Realignment : : Annotation
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[ RR Compression ] : (separafelyper Variantltype) : look good?
! : | v : ‘/\*
Analysis-Ready : i \ :
[ Reads ] cevand Filtered [ SNPs ] [ Indels ] ceeeedt ® ©
Variants troubleshoot use in project

Example of NGS analysis pipeline for mutation detection, From GATK pipeline, Broad Inst



ALIGNMENT TO THE REFERENCE GENOME
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chromosome 12

TAGATGATGATAGA AGTAGATCCTGGTA GACTAGAGTTGATA | ATGATAGCCCATAG | GATGTAGGGATGA
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Depth of coverage The average number of times that a particular nucleotide is represented in a collection of random raw sequences.
Fold Coverage (Nr of reads* read length)/ target size

Instrinsic instrument error ~0.1%



chromosome 12 choromosome 16 non human
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T TO THE REFERENCE GENOME

Reference sequence
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SEQUENCING "

First generation

Reaction occurs in solution

Each DNA template is
sequenced individually

Long read lenght (~ 1kb)
Low throughtput

Limited sensitivity
(max 20%)

Qualitative
Small-size abnormalities

High costs for large-scale projects
Lower costs for small projects

\

Second generation

Reaction occurs on solid-phase

Thousands of DNA temples are
sequenced in parallel

Short read length (e.g. ~200 pb)
High throughtput

High sensitivity
(depends on coverage)

Quali/Quantitative

Multiple types of abnormalities
(SNV, InDels, CNV, Gene fusions, Translocations/Inversions,
Transcriptome, Pathogen genomes)

“Low” costs for large-scale projects
Higher costs for small projects



MPS Applications

Example
Method Sequencing to determine: reference
DMA-Seq A ganome sequance 57 Comparison, “anatomic’ (isolation by anatomic site), flow cytomatery, DNA extraction,

mechanical shearing, adaptor ligation, PCR and sequencing

Targeted DNA-S2q A subset of a genome (for example, an 20 Comparison, cell culture, DNA extraction, mechanical shearing, adaptor ligation, PCR,
axome) hybridization capture, PCR and saquencing
Mathyl-Seq Sites of DNA methylation, genomsa-wida 34 Perturbation, genetic manipulation, cell culture, DNA extraction, mechanical shearing,
adaptor ligation, bisulfite conversicn, PCR and sequencing
Targeted methyl-Seq DNA methylation in a subset of the 129  Comparison, cell culture, DNA extraction, bisulfite conversion, molecular inversion
genome proba captura, circularization, PCR and sequencing
DMase-Seq, Sono-Seq  Active regulatory chromatin (that is, 113 Perturbation, cell culture, nucleus extraction, DNase | digestion, DNA extraction, adap-
and FAIRE-Seq nuclecsome-depleted) tor ligation, PCR and sequencing
MAINE-Seq Histene-bound DNA (nucleosome posi- 130  Compariscn, cell culture, MNase | digestion, DN A extraction, adaptor ligation, PCR and
tioning) sequancing
ChiIP-Seq Protein-DNA interactions (using chroma- 131 Comparison, ‘anatomic', cell culture, cross-linking, mechanical shearing, immunopre-
tin immunoprecipitation) cipitation, DNA extraction, adaptor ligation, PCR and sequencing
RIP-Saq, CLIP-3e2q, Protein-RMNA interactions 46 Variation, cross-linking, “anatomic’, RMase digestion, immunoprecipitation, RNA extrac-
HITS-CLIF tion, adaptor ligation, reverse transcription, PCR and sequencing
RMA-Seq RNA (that is, the transcriptome) 39 Comparisen, ‘anatomic’, RNA extraction, paly(A) selection, chemical fragmentation,
reversa transcription, second-strand synthesis, adaptor ligation, PCR and sequencing
FRT-Seq Amplification-free, strand-specific 119  Comparison, ‘anatomic’, RMA extraction, poly(A) selection, chemical fragmentation,
transcriptome sequencing adaptor ligation, reverse transcription and saquencing
MET-Seq MNascent transcription 41 Perturbation, genetic manipulation, cell culture, immunoprecipitation, RNA extraction,
adaptor ligation, reverse transcription, circularization, PCR and saquencing
Hi-C Threa-dimensional genome structure 71 Comparisoen, cell culture, cross-linking, proximity ligation, mechanical shearing, affinity
purification, adaptor ligation, PCR and sequencing
Chia-PET Long-range interactions madiated by a 73 Perturbation, cell culture, cross-linking, mechanical shearing, immunoprecipitation,
protein proximity ligation, affinity purification, adaptor ligation, PCR and sequencing
Ribo-Seq Ribosome-protected mRMNA fragments 48 Comparison, call culture, RMasa digestion, ribosomea purification, RMA extraction, adap-
(that is, active translation) tor ligation, reverse franscription, rRMNA depletion, circularization, PCR and saquencing
TRAP Genetically targeted purification of poly- 132  Comparison, genetic manipulation, ‘anatomic’, cross-linking, affinity purification, RNA
somal mRMAs axtraction, poly(A) selection, reverse transcription, second-strand synthesis, adaptor
ligation, PCR and sequencing
PARS Parallal analysis of RNA structure 42 Comparisan, cell culture, RMA extraction, poly(A) selection, RNase digestion, chemical
fragmentation, adaptor ligation, reverse transcription, PCR and saquencing
Synthetic saturation Functional consequences of genatic 93 Variation, genetic manipulation, barcoding, RNA extraction, reversa transcription, PCR
mutagenesis variation and sequencing
Immuno-Sagq Tha B-cell and T-call repertoiras 86 Perturbiation, 'anatomic’, DNA extraction, PCR and sequencing
Deep protein Protein binding activity of synthetic 95 Variation, genetic manipulation, phage display, in vifro competitive binding, DNA extrac-
mutagenesis peptide libraries or variants tion, PCR and sequencing
PhiT-Zeq Relative fitnass of calls containing 92 Variation, genetic manipulation, cell culture, competitive growth, linear amplification,

disruptive inserticns in diverse genes

adaptor ligation, PCR and sequencing

FAIRE-seq, farmaldehyde-assisted isolation of regulatory elements—sequencing. MAINE-Seq, MNase-assisted isolation of nucleocsomes-sequencing; RIP-3eq, RMA-binding protein immunoprecipi-

tation-saquencing; CLIP-Seq, cross-linking immunoprecipitation-sequencing; HITS-CLIP, high-throughput sequencing of RMA isolated by cross-linking immunoprecipitation; FRT-5eq, on-flowcall
reverse franscription—sequencing. MET-3eq, native elongating transcript sequencing. TRAP, translating ribosome affinity purification. PhiT-Seq, phenotypic interrogation via tag sequencing.

Shendure J & Lieberman Aiden E, Nature Biotechnology (2012) 30:1084—-1094
Figure form Ding L et al. , Hum. Mol. Genet. (2010) 9:R 188-196
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Major MPS Applications

Whole genome-seq Whole exome-seq RNA-seq Target-seq
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Genome Exome Transcriptome Selected list
(protein-coding regions) of genes/hot-spots
Pont mutations/InDels Point mutations/InDels Gene fusions Point mutations/InDels
CNV CNV Splice variants CNV

NGS rule of thumb Breath x Depth = Cost

‘Complexity’ x ‘Accuracy’ = Cost




Approach

Advantages

Disadvantages

Whole genome-Seq

1x diploid genome
6x10° bp

Comprehensive landscape of whole genome alterations
Any type of genomic alteration:

= Qualitative (chromosome rearrangements, somatic mutations in coding
and non-coding regions, active retrotrasposons, pathogen genomes)

- Quantitative (gain /loss)

Expensive..

.. hence usually done at low/medium coverage to get
a general picture (at the expence of accuracy)

Huge amount of data to deal with, difficult to
interpret

Risk of incidental findings (ethical issues)

Whole exome-Seq

Cost effective

Good sensitivity (high coverage)

Covers only 1% of the genome

Uneven capture efficiency across exons
(may miss alterations)

1x ex06me Small datasets, easier to interpret
e0x107be Gene alterations (SNV, InsDel) within the coding regions Off-target hybridizations
Miss most fusion genes
Risk of incidental findings (ethical issues)
RNA-Seq Cost effective Coverage dependends on expression levels
NcRNA-Seq - Qualitative (Fusion transcripts, Isoforms, RNA editing) and Miss alterations in low-copy transcripts (low coverage)

Millions of reads

- Quantitative (mRNA and ncRNA expression levels)
Compared to Microarray: wider dinamic range; no dependent on known gene
sequence; free of hybridization artifacts

Small datasets

The inbalance in the representation of different
mMRNAs makes it hard the call of mutations

Targeted-seq

A priori selected list of
genes/mutations

Variable length

Cost effective

Mostly used to detect Point mutations/InDels/CNV
Useful for diagnostics and NGS data validation
Very small dataset, easy to interpret

Very high sensitivity at high coverage

Results are often actionable/Personalized medicine

Miss alterations outside the targeted regions

A priori knowledge of the genes/mutations of
interest




The power of NGS analyses

Image from Ding L et al. Hum. Mol. Genet. 2010;19:R188-R196



So far so good...

...but cancer is not a “simple” genetic disorder...



Genetics

Reference sequence
Chromosome 1

8X coverage

Homozygous C

Heterozygous A/C

Homozygous A

[S—— b A b A
(— [— b A
N [V S— [V S—
- — - — boA
—— | b A b A
R N S— R N S— b A
pbC N [, W—
8/8 reads C 4/8 reads C, 4/8 reads A 8/8 reads A
(100% C) (50% C, 50%A) (100% A)




ANALYSIS OF TUMOR SAMPLES:
ISSUES

- Purity
- Clonality
- Aneuploidy & Rearrangments

- Sample quantity & quality



ANALYSIS OF TUMOR SAMPLES:;
ISSUES

Purity

Contaminantion by non-tumoral cells affects the ability to detect mutations

Example: an heterozygous mutation in a tumor sample 70% pure (30% non-tumoral cells) will be detectable in 35% of the reads

10 cells, 2 alleles per cells (20 alleles total)
7 tumorcells (T) Aa
3 normal cells (N) AA

A=7 from T +(3+3) from N = 13/20 alleles are A
a=7fromT+0fromN = 7/20 alleles are a
The actual allelic frequency of a in the sample will be 7/20= 35%




ANALYSIS OF TUMOR SAMPLES:;
ISSUES

Clonality

Tumors may be highly heterogeneous



The “palyclonal™ eyolution of cancer

New driver mutation
associated with
malignant progression

Passenger mutation

—_—

Driver mutation

New driver mutation Passenger mutation
co-selected

with driver mutation

% Driver mutation

Causally implicated in cancer.

It confers growth advantage to tumor cells,
therefore undergoes positive selection

Passenger mutation
co-selected
with driver mutation

New driver mutation

@ Passenger mutation
No role in cancer

No relevant impact on tumor cell growth or survival.
May be selected as a result of a bystander effect
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DNA sequencing of cancer: what have we learned? Ann Rev Med. 65:63-79



ANALYSIS OF TUMOR SAMPLES:
ISSUES

Somatic vs Germline (comparison with normal matched samples)
Drivers vs Passengers

Functional validation of candidate driver mutations



ANALYSIS OF TUMOR SAMPLES:
ISSUES

Aneuploidy & Rearrangments

Tumors are genetically unbalanced and rearranged

Alignment to the reference genome may be challening




ANALYSIS OF TUMOR SAMPLES;
ISSUES

Sample quantity & quality (FFPE)



ANALYSIS OF TUMOR SAMPLES:
ISSUES

Purity

Clonality

Aneuploidy & Rearrangments
Sample quantity & quality

Intrinsic error rate of the technology
Limits of bioinformatic tools



O'Rawe et al. Genome Medicine 2013, 5:28

http://genomemedicine.com/content/5/3/28 Genome Medicine
RESEARCH Open Access

Low concordance of multiple variant-calling
pipelines: practical implications for exome and
genome sequencing

GATK Jason O'Rawe'?, Tao Jiang®, Guangging Sun’, Yiyang Wu'?, Wei Wang®, Jingchu Hu?, Paul Bodily®, Lifeng Tian®,
Hakon Hakonarson®, W Evan Johnson’, Zhi Wei*, Kai Wang®™ and Gholson J Lyon"*"

GNUMAP
SOAPsnp

Number of SNV
Percent of total
Ti/Tv Ratio

181

SAMTools
SNVer

Conclusions: Our results suggest that more caution should be exercised in genomic medicine settings when
analyzing individual genomes, including interpreting positive and negative findings with scrutiny,
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Figure 1 Sensitivity as a function of mutation allele frequency for five sSNV-detecting tools. Given an allele frequency value £, the sensitivity of
a tool T (either JointSNVMix, MuTect, SomaticSniper, Strelka, or VarScan 2) is calculated as: 5y = NNy where Nris the total number of sSNVs with
sequendng depth =8, the number of alternate allele-supporting reads =22 in the disease sample, and an allele frequency less than f, and Ny is the
number of sSNVs that the tool Tidentified out of these N: point mutations.

Cibulskis et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. (2013) , 3:213-9.



Sensitivity

Sensitivity of mutation detection
as a function of sequencing depth
and mutated allele frequency (f)

f=04 f=0.2 f=0.1 f=0.05
el T,

1.0 1
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08 - /i
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0.2 4
0- '
0 10 20 30 40 5 600 10 20 30 40 5 600 10 20 30 40 5 600 10 20 30 40 5 60
Tumor sample sequencing depth Tumor sample sequencing depth Tumor sample sequencing depth Tumor sample sequencing depth

Cibulskis, K et al., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
Nature Biotechnology (2013) 31, 213-219

Coverage of ~500X is required to detect mutations carried by a subclone representing ~ 1% of the tumor




ANALYSIS OF TUMOR SAMPLES:
ISSUES

Higher coverage and

Dedicated Bioinformatic tools

Need of validation of mutation

Orthogonal approaches (Sanger, Pyroseq, ASO, others)

Interrogation of large cohorts



The power of NGS analyses
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Modified from Ding L et al. Hum. Mol. Genet. 2010;19:R188-R196



Journal of Pathology
] Pathal 2014; 232: 300307 ORIGINAL PAPER
Published online in Wiley Online Library
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Transactivating mutation of the MYOD1 gene is a frequent event
Human Cancer Biology in adult spindle cell rhabdomyosarcoma

OPEN B ACCESS Frealy available online

Karoly Szuhal'* Daniglle de jong,' Wai Yi Leung Christopher DM Fletcher! and Pancras CW Hogenc

Genetic Aberrations in Imatinib-Resistant
Dermatofibrosarcoma Protuberans Revealed by Whole
Genome Sequencing

. Jung Yong Hong'”, Xiao Liu***, Mao Mao’, Miao Li?, Dong Il Choi®, Shin Woo Kang®, Jeeyun Lee'”,
Yoon La Choi™*

Novel Clinically Rel Genes in Gastroi inal Stromal
Tumors Identified by Exome Sequencing

; genetics
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et o Frequent mutation of the major cartilage collagen gene
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Purpose: Chromosomal gains and losses resulting in altered gene dosage 2
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