

D'Investigacions Biomèdiques August Pi i Sunye

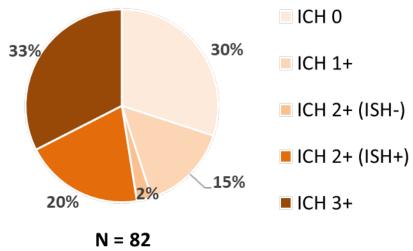
#10P; HER2 loss and PAM50 dynamics after neoadjuvant therapy in HER2 positive early breast cancer

Morganti S¹, Brasó-Maristany F², Rey M², Goberna G², Pascual T³, Schettini F³, Conte B², Gomez Bravo R³, Garcia Fructuoso I³, Segui Solis E³, Galván P²,Sanfeliu E⁴, Gonzalez-Farre B⁴, Vidal M³, Adamo B³, Munoz M³, Lin NU¹, Tolaney SM¹, Prat A², Martínez-Sáez O³

¹Breast Oncology Center, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA, United States of America, ²Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; ³Medical Oncology Department, Hospital Clínic, Barcelona, Spain; ⁴ Pathology department, Hospital Clínic, Barcelona, Spain

Background and objectives

- HER2 loss at time of residual disease (RD) is frequent after neoadjuvant therapy (NAT) for HER2-positive (HER2+) early breast cancer¹⁻⁵
- Subtype switch is also frequent, with HER2-Enriched (HER2E) tumors often converting to non-HER2E⁶⁻⁸.
- The association between HER2 status by immunohistochemistry (IHC) and intrinsic subtype (IS) has never been described.


Methods

- Between Feb/08 and Mar/22, 82 patients (pts) with HER2+ breast cancer underwent NAT at Hospital Clinic of Barcelona and had RD with matched IHC data.
- HER2 loss was defined as HER2 IHC 0/1+ or 2+/ISH not amplified on RD. Research-based PAM50 subtyping was performed with the nCounter platform.
- Associations between HER2 loss, IS dynamics, clinicopathological characteristics and event-free survival (EFS) were assessed.

Results

- At baseline, 61% (n=50) of tumors were HER2 3+ and 83% (n=68) were hormone receptor (HR) positive. All pts received NAT with trastuzumab, 98% with chemotherapy and 52% with pertuzumab. Twenty-five pts (30%) received adjuvant T-DM1 (**Table 1**).
- HER2 loss was identified in 46% (n=38) of BC (24 IHC 0, 12 IHC 1+, 2 IHC 2+/ISH-) (Figure 1 and table 1).

Figure 1. HER2 IHC at surgery.

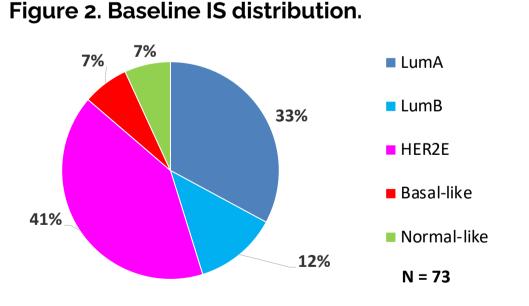
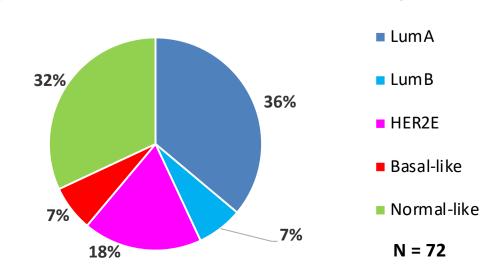
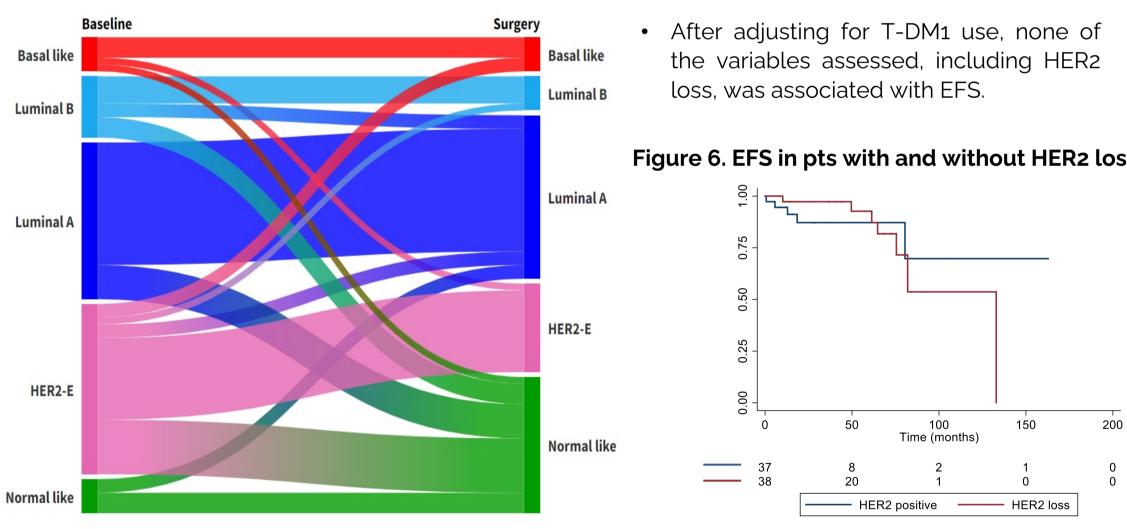


Table 1. Baseline characteri


	Overall
	N=82
Age	
Median (range) yr	57 (30 - 88)
Histology – no. (%)	
Ductal	70 (85%)
Lobular	2 (2%)
Other	3 (4%)
Unknown	7 (9%)
Grade – no. (%)	
1	6 (7%)
2	47 (57%)
3	19 (23%)
Unknown	10 (12%)
HR – no. (%)	
Positive	68 (83%)
Negative	13 (16%)
Unknown	1 (1%)
Baseline HER2 ICH	
– no. (%)	00 (000)
2+ (ISH positive)	32 (39%)
3+	50 (61%)
TILs – no. (%)	$22(40^{\circ})$
<10	33 (40%) 13 (16%)
10-50	3 (4%)
>50	3 (40%)
Unknown Ki67 – no. (%)	33 40/0/
-	25 (5 - 90)
Median (range) cT – no. (%)	23 (5 90)
T1	31 (38%)
T2	31 (38%)
T2 T3	9 (11%)
T3 T4	2 (2%)
Unknown	9 (11%)
cN – no. (%)	
No	52 (63%)
N1	21 (26%)
N2	1 (1%)
N3	1 (1%)
Unknown	7 (9%)
Time from NAT to	
surgery	
Median (range)	28 (4 – 66)
Adjuvant T-DM1 –	
no. (%)	25 (30%)

stics.		
HER2 status on RD		
HER2-	HER2+	
N=38	N=44	
57 (36-88)	56 (30-80)	
37 (97%) 1 (3%) 0 0	33 (75%) 1 (2%) 3 (7%) 7 (16%)	
4 (11%) 20 (53%) 6 (16%) 8 (21%)	2 (5%) 27 (61%) 13 (30%) 2 (5%)	
33 (87%) 4 (11%) 1 (3%)	35 (80%) 9 (20%) 0	
25 (66%) 13 (34%)	7 (16%) 37 (84%)	
8 (21%) 7 (18%) 1 (3%) 22 (58%)	25 (57%) 6 (14%) 2 (5%) 11 (25%)	
24 (5 - 90)	30 (7 - 60)	
13 (34%) 16 (42%) 7 (18%) 0 2 (5%)	18 (41%) 15 (34%) 2 (5%) 2 (5%) 7 (16%)	
26 (68%) 10 (26%) 1 (3%) 1 (3%) 0	26 (59%) 11 (25%) 0 0 7 (16%)	
28 (4 - 66)	26 (5 – 54)	
7 (18%)	18 (41%)	

- IS was assessed on 73 baseline and 72 RD samples (67 paired).
- At baseline, distribution of IS was: HER2E 41%, Luminal A (LumA) 33%, Luminal B (LumB) 12%, normal-like 7%, basal-like 7% (Figure 2).
- On RD, distribution of IS was: HER2E 18%, LumA 36%, LumB 7%, normal-like 32%, basal-like 7% (Figure 3).
- ERBB2 mRNA levels significantly decreased after NAT (p=0.001). An IS switch was observed in 40% (n=27) of samples (Figure 5) and was not associated with HER2 loss (p=0.455). However, HER2 loss was numerically more frequent among BC that switched from HER2E to non-HER2E (58%) than in BC that remained HER2E (23%) (p=0.082).


Figure 3. IS distribution on RD at surgery.

Results

associated with HER2 loss (p=0.003).

Figure 5. Sankey plot with subtype switch (n = 67).

References and Acknowledgements Carey et al., J Clin Oncol 2016; 8. Braso-Maristany et al., Nat Comm 2020. This study was funded IDIBAPS.

Disclosures: SM ha no conflicts of interest to declare. This presentation is the intellectual property of the author/presenter. Contact them at olmartinez@clinic.cat for permission to reprint and/or distribute

In a multivariate regression analysis including baseline IHC, ERBB2 mRNA, IS, HR status, time from NAT to surgery and administration of dual HER2 blockade, only *ERBB2* mRNA was

- At a median follow up of 61.0 months, 12 EFS events were recorded.

Figure 6. EFS in pts with and without HER2 loss.

Conclusions

• HER2 loss on RD after NAT is associated with decrease in ERBB2 mRNA levels and is more frequent in tumors switching from HER2E to non-HER2E subtype. • EFS is similar between pts with HER2+ and HER2- RD after trastuzumab-based NAT. • Further validation on large cohorts is warranted.

1. Guarneri et al., Ann Oncol 2013; 2. Mittendorf et al., CCR 2009; 3. Niikura et al., Ann Oncol 2016; 4. Yoshida et al., J Surg Oncol 2017; 5. Morganti S., SABCS 2021; 6. Bianchini et al., Ann Oncol 2018; 7.

OMS is a SEOM fellow 2022. SM is supported by the 2022-2024 Bonadonna Fellowship, funded by AIRC and Fondazione G. Bonadonna