# 9P - Tumor *BRCA1* promoter methylation is associated with a more favorable prognosis in systemically untreated young triple-negative breast cancer patients than tumor *BRCA1* mutation

NETHERLANDS

CANCER
INSTITUTE

ANTONI VAN IEFUWENHOEK

Y. Wang<sup>1</sup>, E.H. Rosenberg<sup>2</sup>, G.M.H.E. Dackus<sup>3</sup>, A. Broeks<sup>4</sup>, S. Cornelissen<sup>4</sup>, P.J. van Diest<sup>3</sup>, M. Hauptmann<sup>5</sup>, N. ter Hoeve<sup>3</sup>, V.M.T. de Jong<sup>1</sup>, K. Jóźwiak<sup>5</sup>, E. Koop<sup>6</sup>, P.M. Nederlof<sup>2</sup>, M. Opdam<sup>1</sup>, R. Sargado<sup>7, 8</sup>, S. Siesling<sup>9, 10</sup>, N. Stathonikos<sup>3</sup>, A. Voogd<sup>11</sup>, W. Vreuls<sup>12</sup>, M. Kok<sup>11</sup>, S.C. Linn<sup>1, 3, 13</sup>, M.K. Schmidt<sup>1</sup>

<sup>1</sup>Department of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; <sup>2</sup>Department of Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; <sup>3</sup>Department of Pathology, the Netherlands; <sup>3</sup>Department of Pathology, defice Zekenhuizer, he Netherlands; <sup>3</sup>Department of Pathology, Germany; <sup>5</sup>Department of Pathology, Germany, <sup>5</sup>Depar

## **Background:**

- Young (<40 years) triple-negative breast cancer (TNBC) patients are recommended to receive chemotherapy.
- Studying young, chemotherapy-naïve TNBC patients with a pathogenic tumor BRCA1 mutation (tBRCA1m) or tumor BRCA1 promoter methylation (tBRCA1 PM) might help to avoid potential over- or under-treatment.

#### Aim:

To investigate the prognosis of systemically untreated, young (<40 years), N0 TNBC patients according to their tBRCA1m and tBRCA1 PM status.

## **Study population:**

TNBC patients from the PARADIGM study:

- Women, < 40 years with  $T_{any}N_0M_0$  TNBC
- Diagnosed between 1989 and 2000 in the Netherlands
- Only received locoregional therapy, as was standard at the time

## Molecular analysis:

DNA was extracted from FFPE tumor tissues; tBRCA1m, tBRCA1 PM were determined using Multiplicom SureMASTR HRR (Agilent) and MLPA ME053 (MRC Holland) respectively.

## Outcomes and statistical method:

- Invasive disease-free survival (IDFS) was estimated using Kaplan-Meier curves; hazard ratios (HRs) were estimated using Cox regression model.
- Death or distant relapse, and second primary tumors were competing events and were estimated using cumulative incidence function. Subdistribution HRs were estimated using Fine and Gray method.
- Multiple imputation (M=20) of missing values of tBRCA1 status (23.1%), tumor stage (1.2%) and stromal tumor infiltrating lymphocytes (sTILs, 0.8%)

#### Results:

- For 373 patients, tBRCA1m and tBRCA1 PM status was available. Of them, 104 (27.9%) had tBRCA1m and 134 (35.9%) had tBRCA1 PM. No tBRCA1m nor tBRCA1 PM was classified as tBRCA1 dual-negative (36.2%).
- tBRCA1m or tBRCA1 PM were mutually exclusive.
- · Median age at diagnosis: 35 years old
- · Median sTILs: 25%
- · Tumor stage 1C: 49.7% of patients
- Tumor grade 3: 85.6% of patients
- Distribution of clinicopathological characteristics did not significantly differ by tBRCA1 status.

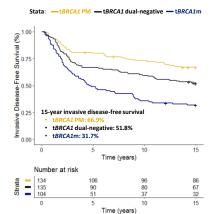



Figure 1: Invasive disease-free survival according to tumor BRCA1 status

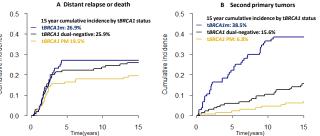



Figure 2: Cumulative incidence of distant relapse or death (A), and second primary tumors (B) according to tumor *BRCAI* status.

Table 1: Adjusted (subdistribution) hazard ratios for invasive disease or death, distant relapse or death

| and second primary tumors.        |                                                  |                                                                 |                                                              |
|-----------------------------------|--------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|
|                                   | HRs for invasive<br>disease or death<br>(95% CI) | Subdistribution HRs<br>for distant relapse or<br>death (95% CI) | Subdistribution HRs<br>for second primary<br>tumors (95% CI) |
| tBRCA1 dual-negative              | reference                                        |                                                                 |                                                              |
| tBRCA1 PM                         | 0.65 (0.45-0.93)                                 | 0.85 (0.52-1.39)                                                | 0.37 (0.17-0.82)                                             |
| t <i>BRCA1</i> m                  | 1.88 (1.36-2.60)                                 | 1.22 (0.74-2.02)                                                | 2.97 (1.70-5.19)                                             |
| sTILs (10% increment)             | 0.91 (0.88-0.95)                                 | 0.74 (0.68-0.80)                                                | 1.08 (1.01-1.16)                                             |
| Tumor stage 2-3 vs. 1 (reference) | 1.12 (0.84-1.50)                                 | 1.36 (0.91-2.03)                                                | 0.83 (0.51-1.36)                                             |
| Grade 3 vs. Grade 1/2 (reference) | 1.32 (0.88-1.98)                                 | 1.17 (0.70-1.97)                                                | 1.64 (0.74-3.63)                                             |
| Ductal carcinoma NOS              | reference                                        |                                                                 |                                                              |
| Metaplastic carcinoma             | 0.39 (0.18-0.85)                                 | 0.19 (0.05-0.81)                                                | 1.03 (0.36-2.93)                                             |
| Other subtypes                    | 0.78 (0.34-1.82)                                 | 0.41 (0.10-1.75)                                                | 1.85 (0.54-6.39)                                             |
| LVI yes vs. no (reference)        | 1.83 (1.27-2.64)                                 | 2.46 (1.58-3.84)                                                | 0.40 (0.16-1.02)                                             |
| Lumpectomy and radiotherapy       | reference                                        |                                                                 |                                                              |
| Mastectomy                        | 0.98 (0.72-1.33)                                 | 1.56 (1.03-2.37)                                                | 0.92 (0.56-1.54)                                             |
| Other treatment                   | 1.03 (0.61-1.74)                                 | 1.96 (1.04-3.71)                                                | 0.60 (0.21-1.71)                                             |

HRs=hazard ratios; CI=confidence interval; sTILs=stromal tumor infiltrating lymphocytes; LVI=lymphovascular invasion; other treatment includes lumpectomy alone, mastectomy and radiotherapy or surgery not specified.

#### Conclusions:

For systemically untreated young TNBC patients, tumor *BRCA1* promoter methylation was associated with surprisingly better IDFS (15-year: 66.9%) compared to either tumor *BRCA1* dual-negative (15-year: 51.8%) or tumor *BRCA1* mutation (15-year: 31.7%).

This difference in IDFS could be mainly attributed to substantially higher risk for second primary tumors in patients with tumor *BRCA1* mutation (15-year cumulative incidence: 38.5%)

Patients with tumor *BRCA1* promoter methylation had a 15-year cumulative incidence of second primary tumors of only 6.8%, which may aid in contralateral preventive mastectomy decisions.

## Acknowledgement:

This study has received funding from the Dutch Cancer Society (KWF, Project number: 11655). The PARADIGM study received funding from ZonMW, ASH and Vrienden van UMC Utrecht. Agilent provided library preparation and sequencing, and provided the results

#### Declare of interests:

The first author (the presenting author) has no conflicts of interest to declare.

E-mail: yu.wang@nki.nl