

An optimized Breast Cancer Index node-positive (BCIN+) prognostic model for late distant recurrence in patients with hormone receptor positive (HR+) node positive breast cancer

Gerrit-Jan Liefers¹; Iris Noordhoek¹; Yi Zhang²; Dennis C. Sgroi³; Hein Putter¹; Kai Treuner²; Jenna Wong²; Elma Meershoek-Klein Kranenbarg¹; Marjolijn Duijm-de Carpentier¹; Cornelis van de Velde¹; Catherine A. Schnabel²

INTRODUCTION

- Breast Cancer Index (BCI) is a validated gene expression-based assay that integrates the molecular grade index (MGI) and the two-gene ratio HOXB13/IL17BR (H/I), that evaluate tumor proliferation and estrogen signaling, respectively.¹⁻⁴
- o Integration of MGI and H/I generates a prognostic BCI score that significantly predicts risk of overall (10y), early (0-5y), and late (\geq 5y) distant recurrence (DR) in HR+, node-negative (N0) and node-positive (N1) breast cancer.
 - The N1 prognostic model (BCIN+) integrates tumor size and grade.
- The H/I ratio is the predictive component of BCI and has been shown to predict endocrine response across various treatment regimens.
- The current prognostic model, BCIN+, was trained in the Trans-ATAC (Arimidex, Tamoxifen, Alone or in Combination) cohort, which randomized patients at the time of diagnosis to evaluate primary adjuvant anastrozole versus tamoxifen.⁵
- The IDEAL (Investigation on the Duration of Extended Letrozole) trial randomized patients that completed 5 years of endocrine therapy and compared additional 5 vs 2.5y of extended letrozole providing a cohort that specifically evaluated late DR.
- The aim of the current study was to specifically evaluate prognostic performance of BCIN+ in a late DR cohort.

METHODS

- Patients with 1 to 3 positive nodes (N1) randomized within 6 years from surgery in the 7.5-year endocrine treatment arm of the translational IDEAL cohort (**Figure 1**) were used to examine cut-points for the BCIN+ model across a range of 0 to 10 to classify patients into Low- and High-risk groups.
- Kaplan-Meier analysis was used to calculate the 15y (postdiagnosis, 10y post-randomization) late distant recurrence free survival (DRFS) as the primary endpoint.
- The BCI assay cut-point was selected based on the classification of a Low-risk group with maximum number of patients and with >95% 15y late DRFS.
- Initial validation of the optimized prognostic model was performed in an institutional retrospective cohort from Massachusetts General Hospital (MGH) using Cox proportional pN0 N=107 hazards regression.

Figure 1. IDEAL translational cohort 7.5-year arm N1 patient flow.

		MGH N1
	(N=218)	(N=349)
Age at surgery	64 (000()	407 (000/)
<50	64 (29%)	127 (36%)
≥50	154 (71%)	222 (64%)
pT stage		004 (000()
pT1	120 (55%)	231 (66%)
pT2	89 (41%)	109 (31%)
pT3	9 (4%)	9 (3%)
Grade		
1	51 (24%)	70 (20%)
2	112 (51%)	201 (58%)
3	55 (25%)	78 (22%)
Tumor type		
Ductal	174 (80%)	303 (87%)
Mixed	0 (0%)	7 (2%)
Lobular	30 (14%)	39 (11%)
Other	14 (6%)	0 (0%)
ER		
Positive	211 (97%)	345 (99%)
Negative	7 (3%)	4 (1%)
PR		
Positive	180 (83%)	322 (92%)
Negative	33 (15%)	26 (8%)
Unknown	5 (2%)	1 (0%)
HER2		
Positive	19 (9%)	41 (12%)
Negative	75 (34%)	226 (65%)
Unknown	124 (57%)	82 (23%)
Prior endocrine therapy		
5-year TAM	15 (7%)	143 (41%)
5-year Al	60 (28%)	64 (18%)
$TAM \rightarrow AI$	143 (65%)	142 (41%)
Prior chemotherapy		
Yes	141 (65%)	277 (80%)
No	77 (35%)	71 (20%)
Unknown	0 (0%)	1 (0%)
Distant Recurrence	30 (14%)	38 (11%)

This study was funded by Biotheranostics, Inc. and in part by a grant from the Breast Cancer Research Foundation (DCS) Please contact Catherine A. Schnabel at cathy.schnabel@biotheranostics.com for comments, questions or permission to reprint and/or distribute.

¹Leiden University Medical Center, Leiden, the Netherlands; ²Biotheranostics, Inc., San Diego, CA; ³Massachusetts General Hospital, Boston, MA, USA

RESULTS

Table 1. Patient Characteristics

had T1 tumors, and 51% were grade 2 (Table 1).

Figure 2. Optimized BCIN+ in IDEAL N1 Cohort

- for BCI-Low risk group.
- 95% CI: 1.01-54.71; p=0.020) (**Figure 2**).

CONCLUSIONS

 A new optimized cut-point of BCIN+ scores was identified for node positive patients using the IDEAL N1 subset. • The cut-point was chosen to ensure the 15-year risk of late DR was greater than 95% (96.8% in IDEAL N1). The cut-point was validated in the independent MGH N1 cohort for late DR.

Additional studies in randomized extended endocrine trial N1 cohorts are required for further validation of this BCIN+ model optimized for late DR.

REFERENCES

1. Sgroi D et al. Lancet Oncol 2013;14(11):1067-76. 2. Sgroi et al. J Natl Cancer Inst 2013;105:1036-1042. 3. Zhang Y et al. Clin Cancer Res 2013;19:4196-4205. 4. Sanft T et al. Breast Cancer Res Treat 2015;154(3):533-41. 5. Sestak I et al. SABCS 2015: P2-08-12.

AUTHOR DISCLOSURES, FUNDING, AND CONTACT INFORMATION

GJL: Consultant/advisor: Biotheranostics, Inc.; Research funding: Biotheranostics, Inc. YZ, KT: Patents, royalties, other intellectual property: Biotheranostics, Inc.; Stock and other ownership interests: European Society of Medical Oncology (ESMO) Biotheranostics, Inc.; Employment: Biotheranostics, Inc.; Travel, accommodations, expenses: Biotheranostics, Inc. JW: Stock and other ownership interests: Biotheranostics, Inc.; Employment: **Breast Cancer Congress** Biotheranostics, Inc.; Travel, accommodations, expenses: Biotheranostics, Inc. DCS: Consultant/advisor: Merrimack Pharmaceuticals; Patents, royalties, other intellectual property: Biotheranostics, Inc. CAS: Patents, royalties, other intellectual property: Biotheranostics, Inc.; Stock and other ownership interests: Biotheranostics, Inc.; Leadership: Biotheranostics, Inc.; Employment: Biotheranostics, Inc.; Travel, Virtual: May 5-8, 2021 accommodations, expenses: Biotheranostics, Inc. IN, HP, EMKK, MDC, CV: Nothing to disclose.

