Targeting KRAS^{G12C}: Repurposing of Potential Therapeutics for the Treatment of Pancreatic Ductal Adenocarcinoma (PDAC)

Inspiring Excellence

BACKGROUND

- PDAC accounts for over 90% of all pancreatic malignancies.
- It is the fourth most frequent cause of cancer-related mortalities.
- Main molecular trait of PDAC is the activation of MAPK pathway caused by KRAS mutation.
- Development of drug resistance is the key factor for the failure of existing PDAC therapy. Therefore, novel therapeutic approaches are necessary for the treatment of PDAC.
- In this study, the KRAS^{G12C} protein structure has been utilized to identify a drug candidate which might be repurposed for the potential treatment of PDAC.

Figure 1. Structure of mutated KRAS^{G12C} (PDB ID:5F2E)

Figure 2: Screening Process

Molecular Docking Results

Table 1. Binding affinity values of the known inhibitor and proposed candidate with mutated KRAS

Co-crv

Ad appro

Apaluta recep

Binding pockets of Adagrasib (red) and Figure 3. Apalutamide (blue) in mutated KRAS (PDB ID: 5F2E)

Final Publication Number: 440P ER. Kabir*, MH. Tanisha, BH. Sagar, R. Mollika, TTS. Khan, NM. Chowdhury, H. Yasmin, NZ. Khair, M. Quadir, N. Mustafa School of Pharmacy, Brac University, 41 Mohakhali, Dhaka 1212

RESULTS

Drugs	Binding affinity (kcal/mol)
ystallized Ligand (ARS-853)	-7.1
agrasib (FDA- oved inhibitor of KRAS ^{G12C})	-10.0
amide (Androgen otor antagonist)	-10.4

• The surface structure shows how Adagrasib (red) and Apalutamide (blue) fit into the binding pocket adjacent to Switch-II of the mutated KRAS protein.

Table 2. Binding interactions between the drugs and mutated KRAS

Adagrasib	Types of Bonds	Res
	Electrostatic and others	
	Hydrophobic bond	PHE28,LE Al
Apalutamide	Types of Bonds	Res
	Hydrogen bond	ASN116,SE
	Halogen bond	
	Hydrophobic bond	PHE28,LY
	Electrostatic and others	Ľ

interactions van der Waals

Alkyl Pi-Alkyl

Figure 4. Ligplots showing the interactions of (a) Adagrasib, (b) Apalutamide with mutated KRAS^{G12C} (PDB ID:5F2E)

LEU A:120

Predictions of Pharmacokinetic Parameters (ADME Profile)

due in Contact LYS117 U120,ALA18,LYS117, LA146,LYS147

due in Contact ER145, ALA146, LYS147, GLY15,LYS117 ASP119 S117, LEU120, ALA18, ALA146 YS117,PHE28

(b)

Figure 5. Schematic representation of the ADME properties of (a) Adagrasib, (b) Apalutamide

Apalutamide exhibits acceptable ADME properties.

- Based on the calculation of ADME parameters by QikProp, Adagrasib is poorly soluble and Apalutamide is moderately soluble, which is consistent with their actual solubility.
- Apalutamide has excellent GI absorption and intestinal permeability, compared to the known inhibitor.
- Apalutamide does not penetrate the CNS or the blood brain barrier as suggested by the CNS, logBB and PSA values.

Disclaimer: Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

BRAC UNIVERSITY School of Pharmacy

CONCLUSION

- Apalutamide shows comparable binding affinity to Adagrasib.
- Apalutamide exhibits good binding interactions in the same pocket in KRAS^{G12C} as Adagrasib which might lock the protein in an inactive GDP-bound state.
- Apalutamide has acceptable ADME properties.

FUTURE WORK

- In vitro biological evaluation of Apalutamide against KRAS^{G12C} can be done to confirm the molecular docking results. *e.g.*, investigation of IC_{50} values and GI₅₀ values in pancreatic cancer cell lines.
- Molecular dynamic simulation of Apalutamide in KRAS^{G12C} can be conducted to further investigate their interactions.
- Apalutamide can be loaded in nanocarriers for targeted cancer therapy.

REFERENCES

- 1. Dassault Systèmes BIOVIA. (2017), "Discovery Studio Visualizer", Technology.
- 2. He, Q. and Liu, Z. (2022), "Targeting KRAS in PDAC : A New Way to Cure It ?", pp. 1–16.
- 3. Luchini, C., Paolino, G., Mattiolo, P., Piredda, M.L., Cavaliere, A., Gaule, M., Melisi, D., et al. (2020), "KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities", Journal of Experimental and *Clinical Cancer Research*, BioMed Central Ltd, Vol. 39 No. 1, рр. 1–10.
- 4. Gentile, D. R., Rathinaswamy, M. K., Jenkins, M. L., Moss, S. M., Siempelkamp, B. D., Renslo, A. R., Burke, J. E., & Shokat, K. M. (2017). Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chemical Biology, 24(12), 1455-1466.e14. https://doi.org/10.1016/J.CHEMBIOL.2017.08.025
- 5. Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A.G. and Karamouzis, M. V. (2020), "Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy", World Journal of Gastrointestinal Oncology, Baishideng Publishing Group Inc, Vol. 12 No. 2, p. 173

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest

*Corresponding author email: eva.kabir@bracu.ac.bd

