

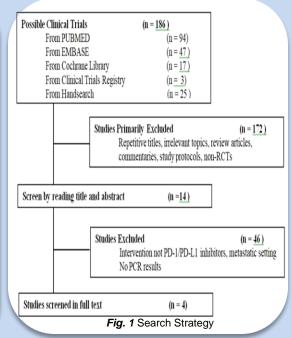
NEOADJUVANT IMMUNOTHERAPY PLUS CHEMOTHERAPY IN TRIPLE-NEGATIVE BREAST CANCER A METAANALYSIS AND SYSTEMATIC REVIEW

ANALYSIS AND SYSTEMATIC REVIEW

PANDY, JESSA GILDA P., ALCANTARA, MICHELLE,

CRUZ-ORDINARIO, MEL VALERIE B., LI, RUBI K.

CRUZ-ORDINARIO, MEL VALERIE B., LI, RUBI K.


Section of Medical Oncology, Cancer Institute, St. Luke's Medical Center, Quezon City

INTRODUCTION

In the early stages, the use of neoadjuvant treatment is the standard of care in triple negative breast cancers (TNBCs). Patients who achieve a pathological complete response (pCR) with primary therapy have improved survival outcomes. The programmed cell death protein 1 (PD-1) is an immune checkpoint that inhibits T-cell effector function within tissues. Its ligand, PD-L1, has been shown to have high expression in TNBCs. To date, major research efforts are being undertaken to determine the use of **PD-1/PD-L1 immune checkpoint inhibitors in TNBC**. Recent randomized controlled trials (RCTs) have shown promising activity of PD-1/PD-L1 inhibitors in the neo-adjuvant setting.

METHODS

A systematic search of Pubmed. Embase. Cochrane, Clinical trials databases and hand search were utilized to identify RCTs investigating the use of neo-adjuvant PD-1/PD-L1 inhibitors plus standard chemotherapy in TNBC. Trials published up to March 2020 were included. Using the random effects model, pooled Odds ratios (ORs) with 95% confidence intervals (CI) were calculated for pCR. Subgroup analysis of pCR rates based on PD-L1 expression was also done.

The authors state no conflict of interest. The manuscript has not been supported by any source of support, including sponsorship or any financial sources.

RESULTS

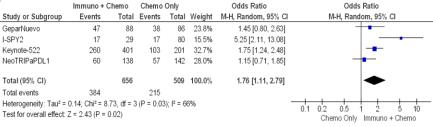


Fig. 2 Four RCTs were included (N=1306) and analyzed. Neoadjuvant immunotherapy plus chemotherapy showed significant pCR benefit of 58.5% vs 42.2% compared to chemotherapy alone (OR1.76, 95%Cl1.11-2.79,P<0.02).

	Immuno + Chemo		Chemo Only		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 PD-L1 Positive							
GeparNuevo	40	69	35	69	15.0%	1.34 [0.68, 2.62]	+-
Keynote-522	230	334	90	164	45.7%	1.82 [1.24, 2.67]	-
NeoTRIPaPDL1	41	79	37	77	17.2%	1.17 [0.62, 2.19]	-
Subtotal (95% CI)		482		310	77.9%	1.55 [1.16, 2.09]	•
Total events	311		162				
Heterogeneity: Tau ² =	0.00; Chi ² = 1	63, df = 2	2 (P = 0.44	4); I ² = 0	%		
Test for overall effect:	Z = 2.93 (P =	0.003)					
Fig. 3	Subarou	n ana	alvsis	base	ed on	PD-L1 expression	showed that in the

Fig. 3 Subgroup analysis based on PD-L1 expression showed that in the immunotherapy group, there is a significantly higher pCR rate in the PD-L1-positive population than in the PD-L1 negative group (64.5%vs39.4%, OR1.55, 95%CI 1.16-2.09, p=0.003, I2 = 0%).

CONCLUSIONS

PD-1/PD-L1 inhibitors combined with chemotherapy was associated with increased pCR rates in TNBC, hence, supporting its use in the neo-adjuvant setting. Subgroup analysis showed that the benefit of adding immunotherapy was more significant in those with PD-L1-expressing tumors. This indicates that the PD-L1 immune marker may have utility in selecting TNBC patients who can benefit more from PD-L1 inhibitors. Longer follow-up of these studies would hopefully show significance in progression-free survival and overall survival.

Costa R, Gradishar WJ. Triple-negative breast cancer: current practice and future directions. Journal of oncology practice 293, 2018.

Diana A, Franzese E, et al. Triple-negative breast cancers: systematic review of the literature on molecular and clinical features with a focus on treatment with breast cancers systematic review of the literature on molecular and clinical features with a focus on treatment with breast 2018 (2018).