

ORGANIZATION AND ROLE OF THE MOLECULAR TUMOR BOARD

Rodrigo Dienstmann

(PERSONAL) CONFLICTS OF INTEREST

Advisory role: Roche, Foundation Medicine

Boehringer-Ingelheim

Speaker's fee: Roche

Amgen

Ipsen

Servier

Sanofi

MSD

Research grant: Merck

Pierre Fabre

BMS

WHY MOLECULAR TUMOR BOARDS?

Genomic reporting

Genomic matching

APPROVED (OR CLOSE TO) GENOMICS-GUIDED THERAPIES

ABL1 fusion/ mut

Leukemia

Imatinib, Dasatinib, Nilotinib, Bosutinib, Ponatinib

Crizotinib, Ceritinib, Alectinib, Lorlatinib, Brigatinib

BRAF V600 mut Melanona, Lung, Thyroid, CRC Vemurafenib, Dabrafenib, Encorafenib, Trametinib, Cobimetinib, Binimetinib

BRCA1/2 mut Ovary, Breast, Pancreas, Prostate Olaparib, Niraparib, Rucaparib, Talazoparib

EGFR mut Lung Gefitinib, Erlotinib, Afatinib, Dacomitinib, Osimertinib

ERBB2 ampl/mut Breast, Gastric, CRC Trastuzumab, Pertuzumab, T-DM1, Lapatinib, Neratinib

FGFR2/3 fusions/ mut Bladder Erdafitinib

FLT3 mut Leukemia Midostaurin, Gilteritinib IDH1/2 mut Leukemia, Biliary tract Ivosidenib, Enasidenib

KIT mut GIST Imatinib, Sunitinib, Regorafenib, Sorafenib

KRAS wt CRC Cetuximab, Panitumumab

MET ampl/ exon 14 skip Lung, Renal Crizotinib, Cabozantinib

NRAS wt CRC Cetuximab, Panitumumab

NTRK1/2/3 fusion All solid tumors Larotrectinib, entrectinib

PDGFB fusionSarcomaImatinibPDGFRA/B fusLeukemiaImatinibPIK3CA mutBreastAlpelisibROS1 fusionLungCrizotinib

TSC1/2 mut

Brain Everolimus

EMERGING GENOMICS-GUIDED THERAPIES

ATM mut	Prostate	Olaparib
BRAF L596/K601 mut	Melanoma	Trametinib
CDK4 amp	Sarcomas	Abemaciclib, Palbociclib, Ribociclib
ESR1 mut	Breast	Fulvestrant
EZH2 mut	Lymphoma	Tazemetostat
HRAS mut	Head & Neck	Tipifarnib
JAK2 fus	Leukemia	Ruxolitinib
KRAS G12C mut	Lung	AMG510
MAP2K1 mut	Ovarian, Melanoma, Lung	Cobimetinib, Trametinib
MTOR mut	Renal, Bladder	Everolimus, Temsirolimus
NRAS mut	Melanoma	Cobimetinib, Binimetinib
PALB2 mut	Pancreas, Prostate	Olaparib
PTCH1 mut	Skin, Embryonal	Vismodegib, Sonidegib
RET fus/mut	Lung, Thyroid	Selpercatinib, pralsetinib

LINEAR INCREASE (0.5% - 1.0% ANNUAL) IN GENOMICS-GUIDED THERAPIES (USA, 2006-2018)

Linear (Genome Targeted Benefit Patients)

—— Linear (Genome Targeted Eligible Patients)

MANY TARGETS, SMALL POPULATIONS

INCREASED COMPLEXITY OF GENOMIC BIOMARKERS

Targeted inhibitors

+

Cancer immunotherapies

Single-gene biomarkers

(e.g. EGFR, ALK, ROS1, etc.)

Multiple-gene biomarkers

(e.g. BRCA1/2, PALB2, etc.)

Complex genomic signatures

(Homologous Recombination Deficiency) (Microsatellite instability)

(Tumour mutational burden)

Decreasing utility of single marker testing

Increasing need for comprehensive genomic profiling

MEDICAL KNOWLEDGE IS CONSTANTLY INCREASING

Clinical studies presented at major congresses

328 abstracts from ASCO
2018 contained the
keywords 'profiling' or
'targeted therapy' in
combination with 'clinical
study' or 'clinical trial'

Clinically relevant genomic alterations

Available targeted therapies

Therapies in development

203 variants of genes are associated with cancer therapies

- Approved by the FDA
- Used as standard of care or
- With demonstrated clinical evidence

125 unique targeted therapies are approved across a range of cancers

At least **31** unique therapies are being assessed in pan-tumour basket trials

How to manage increasing available clinic-genomic data and knowledge?

WHY MOLECULAR TUMOR BOARDS?

Genomic reporting

Genomic matching

INTERPRETATION FUNNEL

"MINIMAL" DATA IN GENOMICS REPORT (MY OPINION)

Functional variants (mutation, copy number, fusion)

Level of evidence for actionability

Resistance markers

Mutant allele fraction

On-label vs. Clinical trial/Off-label

vs. Biological relevance

Upfront and/or acquired (co-existing alterations)

Clonality vs. subclonality

Variants of unknown significance

Other information

Mutation signatures: HRD, MSI, TMB, others

Germline testing recommendations

ACTIONABILITY PREVALENCE

Level A – approved or guidelines

Level B – clinical trial or hypothetical target

MULTIPLE PUBLIC KNOWLEDGEBASES

- OncoKB (MSKCC) http://oncokb.org/#/
- MyCancerGenome (Vanderbilt) https://www.mycancergenome.org/
- <u>CGI (Barcelona)</u> https://www.cancergenomeinterpreter.org/home
- CIViC (WashU) https://civic.genome.wustl.edu/#/home
- PMKB (Cornell) https://pmkb.weill.cornell.edu/
- JAX-Clinical Knowledgebase (Jackson lab) https://ckb.jax.org/
- PCT (MD Anderson) https://pct.mdanderson.org/
- MTBP https://public-mtb.scilifelab.se/
- <u>cBioPortal</u> https://cbioportal.org/
- COSMIC (Sanger) http://cancer.sanger.ac.uk/cosmic
- Clinical Trials https://www.clinicaltrials.gov/

MOLECULAR EPIDEMIOLOGY

REDUNDANT EFFORTS NON-OVERLAPPING INTERPRETATIONS

Example: Rectal cancer patient refractory to SoC therapy, CGP: BRAF L597P

Levels of Evidence

Actionable Genes

Cancer Genes

Data Access

About

Team

News

Terms

Precision Oncology Knowledge Base

642
Genes

4932

Alterations

45
Tumor Types

89

Drugs

BRAF L597P

Level 1
FDA-approved

25 Genes

Level 2
Standard care
13 Genes

Level 3
Clinical evidence
30 Genes

Level 4
Biological evidence
20 Genes

Level R1
Standard care
5 Genes

Level R2
Clinical evidence
6 Genes

Example: Rectal cancer patient refractory to SoC therapy, CGP: BRAF L597P

Levels of Evidence

Actionable Genes

Cancer Genes

Data Access

About

Team

News

Terms

Search:

BRAF L597P

Likely Oncogenic, Level 3A

BRAF, an intracellular kinase, is frequently mutated in melanoma, thyroid and lung cancers among others. The BRAF L597P mutation has not been functionally or clinically validated. However, BRAF L597Q/V are known to be oncogenic, and therefore BRAF L597P is considered likely oncogenic.

See additional BRAF information

•

Cancer Type Citations ▲ Alteration Drug(s) **▼** Level L597 Melanoma Trametinib 3A 3 references L597 All Solid Tumors PLX8394 5 references Oncogenic Mutations Histiocytosis Cobimetinib 3A 2 references

Example: Rectal cancer patient refractory to SoC therapy, CGP: BRAF L597P

Levels of Evidence

Actionable Genes

Cancer Genes

Data Access

About

n N

Terms

Search:

BRAF L597P

Likely Oncogenic, Level 3A

BRAF, an intracellular kinase, is frequently mutated in melanoma, thyroid and lung cancers among others. The BRAF L597P mutation has not been functionally or clinically validated. However, BRAF L597Q/V are known to be oncogenic, and therefore BRAF L597P is considered likely oncogenic.

See additional BRAF information

•

▲ Alteration	Cancer Type	Compelling biological evidence supports the biomarker as being predictive of response to a drug but neither biomarker and drug are	→ Level	Citations
<u>L597</u>	Melanoma	drug but neither biomarker and drug are standard of care	3A	3 references
L597	All Solid Tumors	PLX8394	4	5 references
Oncogenic Mutations	Histiocytosis	Cobimetinib	3A	2 references

Example: Rectal cancer patient refractory to SoC therapy, CGP: BRAF L597P

Levels of Evidence Actionable Genes

Cancer Genes

Data Access

About

Terms

BRAF I 597P

D1 0 11 20071					
Likely Oncogenic , Level 3A BRAF, an intracellular kinase, is frequently mutated in melanoma, t However, BRAF L597Q/V are known to be oncogenic, and therefore See additional BRAF information ⊙		That illimited strate baladoxical what it patievals activation.			ally or clinically validated. Search:
		▲ Alteration	Cancer -	RAF inhibitor PLX8394 selectively driven signaling.	
<u>L597</u>	Melanorr	Yao Z et al. Nat Med. 2019		PMID: 30559419	3 references
<u>L597</u>	All Solid	Tumors	PLX8394	4	5 references
Oncogenic Mutations	Histiocyto	osis	Cobimetinib	3A	2 references

Example: Rectal cancer patient refractory to SoC therapy, CGP: BRAF L597P

▲ Alteration

Oncogenic Mutations

L597

Publicational Library of Medicine National Institutes of Health

Publicational Resources How To PubMed

PubMed
Advanced

Nat Med. 2019 Feb;25(2):284-291. doi: 10.1038/s41591-018-0274-5. Epub 2018 Dec 17.

RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling.

Yao Z^{1,2}, Gao Y¹, Su W¹, Yaeger R^{2,3}, Tao J², Na N¹, Zhang Y⁴, Zhang C⁴, Rymar A⁴, Tao A⁵, Timaul NM¹, Mcgriskin R¹, Outmezguine NA¹, Zhao H¹, Chang Q¹, Qeriqi B¹, Barbacid M⁶, de Stanchina E¹, Hyman DM^{2,3}, Bollag G⁴, Rosen N^{7,8,9}.

Author information

Format: Abstract -

- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- 2 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- 3 Weill Cornell Medical College, New York, NY, USA.
- 4 Plexxikon Inc., Berkeley, CA, USA.
- 5 Center for Neural Science, College of Arts and Sciences, New York University, New York, NY, USA.
- 6 Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
- 7 Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. rosenn@mskcc.org.
- 8 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. rosenn@mskcc.org.
- 9 Center for Mechanism-Based Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. rosenn@mskcc.org.

Abstract

Activating BRAF mutants and fusions signal as RAS-independent constitutively active dimers with the exception of BRAF V600 mutant alleles which can function as active monomers¹. Current RAF inhibitors are monomer selective, they potently inhibit BRAF V600 monomers but their inhibition of RAF dimers is limited by induction of negative cooperativity when bound to one site in the dimer¹⁻³. Moreover, acquired resistance to these drugs is usually due to molecular lesions that cause V600 mutants to dimerize⁴⁻⁸. We show here that PLX8394, a new RAF inhibitor⁹, inhibits ERK signaling by specifically disrupting BRAF-containing dimers, including BRAF homodimers and BRAF-CRAF heterodimers, but not CRAF homodimers or ARAF-containing dimers. Differences in the amino acid residues in the amino (N)-terminal portion of the kinase domain of RAF isoforms are responsible for this differential vulnerability. As a BRAF-specific dimer breaker, PLX8394 selectively inhibits ERK signaling in tumors driven by dimeric BRAF mutants, including BRAF fusions and splice variants as well as BRAF V600 monomers, but spares RAF function in normal cells in which CRAF homodimers can drive signaling. Our work suggests that drugs with these properties will be safe and useful for treating tumors driven by activating BRAF mutants or fusions.

unctionally or clinically validated.

Send to -

Search:	
Citations	
3 references	

5 references

2 references

UNSUSPECTED GERMLINE ACTIONABLE ALTERATIONS

MULTIDISCIPLINARY DECISION MAKING

MULTIDISCIPLINARY DECISION MAKING

MOLECULAR TUMOR BOARD

MTBs aim to improve patient outcomes by:

- > **Providing a platform** to discuss complex cases
- Enabling multidisciplinary discussion for integration of diverse patient information
- > Providing more precise, unified therapy recommendations
- Identifying patients eligible for clinical trials
- Aligning and optimising testing and treatment practices
- > Continuous medical education on emerging biomarkers

MOLECULAR TUMOR BOARD DISCORDANCES

26 years-old, bladder cancer, chemotherapy-refractory

NGS:

KRAS G12V, TP53 H214fs, CDKN2C L65F, CTNNA1 K577_L578 > TKL, MAP3K1 T949-E950insT. MYCN E47fs*8 P365A, JAK1 I597M, FANCL T367fs*12 PIK3CA ampl, MYC ampl, MYCL1 ampl, SOX2 ampl, MUTYH amp (all > 6 copies)

Recommendation	Provided Rationale	Additional Recommendation
PIK3CA, AKT, or mTOR	PIK3CA mutation	
JAK1 allele frequency testing (infiltrating blood cells?) and if consistent with tumor: ruxolitinib	JAK1 mutation (after considering allele frequency)	
Immunotherapy, atezolizumab	Independent of biomarker	Consider genetic counseling and potential germline testing (mutation burden, <i>TP53</i> mutation, patient age)
Phase I trial with bromodomain inhibitor	MYC amplification	Everolimus clinical trial (<i>PIK3CA</i> amplification), sorafenib (<i>KRAS</i> mutation)
PIK3CA or mTOR inhibitor	PIK3CA amplification (data from case study)	MEK inhibitor (<i>TP53</i> and <i>KRAS</i> mutation) or checkpoint inhibition (independent of biomarker, despite potential <i>JAK1</i> resistance)
	JAK1 allele frequency testing (infiltrating blood cells?) and if consistent with tumor: ruxolitinib Immunotherapy, atezolizumab Phase I trial with bromodomain inhibitor	JAK1 allele frequency testing (infiltrating blood cells?) and if consistent with tumor: ruxolitinib JAK1 mutation (after considering allele frequency) Immunotherapy, atezolizumab Independent of biomarker Phase I trial with bromodomain inhibitor MYC amplification PIK3CA or mTOR inhibitor PIK3CA amplification (data from case study)

⁶ N/A because of missing information

The MTBP supports the Cancer Core Europe clinical decisions by classifying the <u>functional</u> and <u>predictive relevance</u> of the germline/somatic tumor variants

variant pathogenicity

variant oncogenicity

 biomarkers of disease diagnosis, prognosis and drug response

 gene/variant information in tumor samples

gene/variant information in healthy samples

1000 Genomes

http://www.mtbp.org

- 1 Sample-wide calculations
 - e.g. the tumor mutation burden
- 2 Clinically relevant flags
 - Pathogenic germline BRCA2
 (genetic counseling alert)
 - Second somatic BRCA2 hit (clinical trial for DNA damage repair deficient tumors)
- 3 Level of the supporting evidence

A – known

B - similar effect

C – predicted

4 Summary of the data supporting that classification

- 1 Biomarker effect
- 2 Drug(s) affected (if applies)
- 3 Cancer type in which the biomarker is reported

CLINICAL DECISION SUPPORT SYSTEMS (CDSS)

Informative

Guidelines and consensus

- NCCN guidelines
- ASCO / ESMO guidelines
- Hospital guidance

Rule-based analysis

- Clinical pathways
- MTB

Artificial intelligence

Continuous learning that integrate all available data

COGNITIVE COMPUTING VS. MOLECULAR TUMOR BOARD

IBM Watson for Oncology vs. University North Caroline MTB

B WfG Actionable gene (231)WfG **UNCseq** pts Actionable gene Actionable gene (327)UNCseq pts (1,018)WfG Actionable gene (96)**UNCseq** pts No actionable gene

10% absolute increase in patients with actionable alterations

Most linked to clinical trial opened in the month before study.

CLINICAL DECISION SUPPORT SYSTEMS (CDSS)

WHY MOLECULAR TUMOR BOARDS?

Genomic reporting

Genomic matching

PRECISION MEDICINE "TEST-DRIVE" SERIES

Scaling up genomics-guided therapies with clinical trials use

Serie	N	Molecular profile	Actionable alteration	Matched trials
MSK-IMPACT	10,945	91%	37%	11%
NCI MATCH	5,963	93%	18%	11%
VHIO	3,900	90%	38%	10%
PROFILER	2,676	73%	52%	7%
MDACC	2,601	77%	39%	5%
COMPACT	1,893	86%	50%	5%
MOSCATO	1,035	81%	40%	19%
RANGE (median)		73%-91% (86%)	18%-52% (38%)	5%-19% (10%)

PRECISION MEDICINE "TEST-DRIVE" SERIES

Scaling up genomics-guided therapies with clinical trials use

PRECISION MEDICINE "TEST-DRIVE" SERIES

Scaling up genomics-guided therapies with clinical trials use

MSKCC – lung cancer

PRECISION MEDICINE "REAL WORLD" SERIES

Genomic-guided targeted therapy

- 60-70% of EGFR mut or ALK fusion received targeted therapy
- < 40% of other NCCN genomic alt. received targeted therapy

PRECISION MEDICINE "REAL WORLD" SERIES

Routine testing vs. Broad-based Genomic Sequencing

14% had actionable alterations
 (on top of EGFR/ALK)4.5% received BGS-guided therapies
 (on top of EGFR/ALK)

CONCLUSIONS & RECOMMENDATIONS

- There is no need to oversell genomics-guided therapies!
 - ➤ Genomic testing for some diseases (e.g., lung) already passed the tipping point for broad utility based on efficiency in cost and tissue use.
- Avoid dubious genomics-guided therapies off-label based on scant evidence.
 - > Always keep high standards for CLINICAL TRIAL matching and declaring success.
- Molecular tumor boards facilitate knowledge spread on emerging biomarkers.
 - Cross-disciplinary education is critical.
 - Interactive clinical decision support systems have huge potential.

MTBs are critical in providing objective evidence-based translation of observed molecular alterations into patient-centred clinical action

ACKNOWLEDGEMENTS

- Susana Aguilar, Jenifer González
- Ana Vivancos Team
- Paolo Nuciforo Team
- Elena Garralda Team
- Judith Balmaña Team
- ODysSey Group

Molecular Prescreening

Cancer Genomics Lab

Molecular Oncology Pathology Lab

Molecular Therapeutics Research Unit

Hereditary Cancer Unit

Cristina Viaplana, Sara Torres, Fiorela Ruiz, Raquel Comas, Magdalena Guardiola, Anna Pedrola, Guillermo Villacampa

David Tamborero

@rdienstmann

