RANKING GENOMIC ALTERATIONS FOR PRECISION MEDICINE: ESCAT PROJECT

Fabrice ANDRE, Gustave Roussy France Joaquin Mateo, Vall d'Hebron Spain

DISCLOSURE SLIDE

Research grant and/or consultant/speaker compensated to the hospital: Novartis, Astra, Pfizer, Daiichi Sankyo, Lilly, Roche

Founder: Pegacsy

MULTIGENE SEQUENCING FOR TREATMENT DECISION

Treatment matched to genomic alterations

Precision medicine for metastatic breast cancer—limitations and solutions

BOTTLENECKS

Patient education Yield, quality, representative, heterogeneity, evolution Sample acquisition Analytical validation, costs, availability, scalability NGS assay Standardization, manual curation **Bionformatics Prioritization, Clinical Relevance** Reporting (Prognosis, Predictive, Resistance) Tumor board Scalability outside academia Drug availability Match to available drug Comorbidities, other factors

OBJECTIVES

A framework to rank genomic alterations as targets for cancer precision medicine

- Advance towards **harmonized terminology** in NGS reports
- Categorize levels of evidence for precision medicine approaches, irrespectively of national/regional regulatory aspects
- . Assist in the interpretation of clinical trial data
- Facilitate discussions at tumor clinical-molecular boards (clinically-oriented)
- Adjust patient expectations when discussing targeting agents
- Assist clinicians and patients to prioritize precision medicine strategies more likely to impact positively in patient outcome

ESCAT: A MULTI-INSTITUTION, INTERNATIONAL EFFORT

ESCAT Project team

- Debyani Chakravarty, US
- Rodrigo Dienstmann, Spain
- Svetlana Jezdic, ESMO
- Abel Gonzalez Perez, Spain
- Nuria Lopez Bigas, Spain
- Charlotte KY Ng, Switzerland
- Philippe L Bedard, Canada
- Giampaolo Tortora, Italy
- Jean-Yves Douillard, ESMO
- Eli Van Allen, US
- Nikki Schultz, US
- Charles Swanton, UK
- Fabrice Andre, France
- Lajos Pusztai, US
- Joaquin Mateo, Spain

Building from previous efforts, accounting for diverstity

ESMO Translational Research and Precision Medicine Working Group

ESCAT Project Team

ESMO Leadership

PRIORITIES

- Randomized clinical trial data as stratification criteria.
- Efficacy (PFS/OS) + Antitumor activity (Response)
- Magnitude of benefit
- Evidence for the match in other tumor types
- Evidence in other biologically similar mutations
- Facilitating dynamic classification as new data emerges

- FDA/EMEA registration status
- One Tier = One Clinical Action
- Not aiming to judge pathogenicity of mutations (biological relevance)
- Not based the drug alone but in the match

ACTIONABILITY + CLINICAL BENEFIT

Publication of ESCAT in Annals of Oncology

A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)

J. Mateo¹, D. Chakravarty², R. Dienstmann¹, S. Jezdic³, A. Gonzalez-Perez⁴, N. Lopez-Bigas^{4,5}, C. K. Y. Ng⁶, P. L. Bedard⁷, G. Tortora^{8,9}, J.-Y. Douillard³, E. M. Van Allen¹⁰, N. Schultz², C. Swanton¹¹, F. André^{12*} & L. Pusztai¹³

Mateo et al, Ann Oncol. 2018 Sep 1;29(9):1895-1902.

doi: 10.1093/annonc/mdy263.

	ESCAT evidence tier	Required level of evidence	Clinical value class	Clinical implication
Ready for rou- tine use	k Alteration-drug match is associated with improved out- come in clinical trials	I-A: prospective, randomised clinical trials show the alteration-drug match in a specific tumour type results in a clinically menningful improvement of a survival end point. He prospective, non-randomised clinical trials show that the alteration-drug match in a specific tumour type results in clinically mention by the prefer seldering by EMO MCBS 1. He chical trials across tumour types or basket clinical trials accorded with the alteration-drug match, with similar benefit observed across tumour types.	Drug administered to patients with the specific molecular alteration has led to improved clinical outcome in prospective clinical trial(s)	Access to the treatment should be considered standard of care
nvestigational	II: alteration-drug match is associated with antitumour ac- tivity, but magni- tude of benefit is unknown	II-A tetropective studies show patients with the specific alteration in a specific tumour type ex- perience clinically meaningful benefit with matched drug compared with alteration-nega- tive patients. II-B prospective clinical trialish show the alter- ation-drug match in a specific tumour type results in increased responsiveness when treated with a matched drug, however, no data currently available on survival end points	Drug administered to a mo- lecularly defined patient population is likely to result in clinical benefit in a given tumour type, but additional data are needed	Treatment to be considered 'preferable' in the context of evidence collection either as a prospective registry or as a prospective clinical trial
Hypothetical target	III: alteration-drug match suspected to improve outcome based on clinical trial data in other tumour type(s) or with similar mo- lecular alteration	III-A: clinical benefit demonstrated in patients with the specific alteration (as dees I and II above) but in a different unour lype. Limited/ above, or clinical evidence available for the patient-specific acroser type or broadly across cancer types. III-B: an alteration that has a similar predicted functional impact as an alterady studied tier I abnormally in the same gene or pathway, but does not have associated supportive clinical data.	Drug previously shown to benefit the molecularly defined subset in another turnour type (or with a dif- ferent mutation in the same gene), efficacy there- fore is anticipated for but not proved	Clinical trials to be dis- cussed with patients
	IV: pre-clinical evi- dence of actionability	N-A: evidence that the alteration or a functional- by similar alteration influences drug sensitivity in preclinical in vitro or in vivo models N-B: actionability predicted in silico	Actionability is predicted based on preclinical stud- ies, no conclusive clinical data available	Treatment should 'only be considered' in the context of early clin- ical trials, Lack of clin- ical data should be stressed to patients
Combination development	V: alteration-drug match is associated with objective re- sponse, but without clinically meaning- ful benefit	Prospective studies show that targeted therapy is associated with objective responses, but this does not lead to improved outcome	Drug is active but does not prolong PFS or OS, prob- ably in part due to mecha- nisms of adaptation	Clinical trials assessing drug combination strategies could be considered
	X: lack of evidence for actionability	No evidence that the genomic alteration is therapeutically actionable	There is no evidence, clinical or preclinical, that a gen- omic alteration is a poten- tial therapeutic target	The finding should not be taken into ac- count for clinical decision

Tier I

Evidence tier	Required level of evidence	Clinical Class	Clinical Implication
I: Alteration-drug match is associated with improved outcome in clinical trials	I-A: Prospective, randomized clinical trials EGFR mutations, ALK translocation lui improvement of a survival endpoint. I-B: Prospective, non-randomized clinical trials show that specific tun ROS1 translocations in a nically	Drug administered to the ng cancer cular alteration has led to improved clinical outcome in prospective clinical	Access to the treatment should be considered standard of care
General	meaningful benefit (as defined by ESMO MCBS 1.1) I-C: Clinical trials in other tumour types or basket clinical trassociated with NTRK fusions match, with similar benefit observed across tumor types	trial	

Tier II

	Evidence tier	Required level of evidence	Clinical Class	Clinical Implication
	II: Alteration-drug	II-A: Retrospective studies show	Drug administered to	Treatment to be
	match is associated	patients with the specific	a molecularly defined	considered
	with antitumor	PTEN loss in TNBC, ESR1 m	utations pulation is	preferable in the
	activity, but	experience clinically meaningful	likely to result in	context of evidence
	magnitude of benefit	benefit with matched drug	clinical benefit in a	collection either as a
_	is unknown	compared to alteration-negative	given tumor type, but	prospective registry
ona		patients	additional data is	or as a prospective
zati			needed	clinical trial
Stig		II-B: Prospective clinical trial(s)		
Investigational		show the alteration-drug match		
	AK	T1 & ERBB2 mutations in bre	east cancers	
		treated with a match drug,		
		however no data currently		
		available on survival endpoints.		

Tier III

	Evidence tier	Required level of evidence	Clinical Class	Clinical Implication
Hypothetical	match suspected to improve outcome based on clinical trial data in other tumor	III-A: Clinical benefit demonstrated in patients with the specific alteration (as tiers I and II above) but in a different tumor type. Limited/absence of clinical evidence available for the patient-specific cancer type or broadly across cancer types	molecularly defined subset in another tumor type, or with a molecular alteration expected to cause a	Clinical trials to be discussed with patients
		III-B: An alteration with expected similar biological functional impact as a match with level I/II, but without clinical data.		

Tier IV

	Evidence tier	Required level of evidence	Clinical Class	Clinical Implication
	IV: Pre-clinical evidence	IV-A: Evidence that the alteration or a	Actionability is predicted	Treatment should only
	of actionability	functionally similar alteration alters	based on preclinical	be considered in the
-	=	drug sensitivity in preclinical in-vitro	studies, no conclusive	context of early clinical
1		or in-vivo models.	clinical data available	trials.
**************************************		IV-B: Actionability predicted in silico		Lack of clinical data should be stressed to patients

Tier V

	Evidend	ce tier	Required level of evidence	Clinical Class	Clinical Implication
Comb Develop	V: match with respons clinically benefit	is associated objective e, but without	Prospective study show that targeted therapy is associated with objective responses, but this does not lead to improved outcome	Drug is active but does not prolong PFS or OS, probably in part due to mechanisms of adaptation	Clinical trials assessing drug combination strategies could be considered.

Tier X

Evidence tier	Required level of evidence	Clinical Class	Clinical Implication
X: Proven lack	of Evidence that the genomic	Conclusive clinical	The result of the
clinical value	alteration is not actionable	evidence exists for a	biomarker assay
		genomic alteration	should not be taken
		not to be useful to	into account for
		select patients for a	clinical decision
		particular targeted	
		agent	

The lack of data demonstrating value is not the same than having data demonstrating lack of value!

Strengths and Limitations

- ESCAT is clinically-oriented (clinical action is the endpoint)
- Clinical trial data as the center of ESCAT
- Provides a shared vocabulary to physicians, patients, drug development stakeholders, NGS developers
- ESCAT goes beyond regulatory status, regulatory markets: creating a joint framework

ROOM FOR IMPROVEMENT:

- Easier rules to upgrade/downgrade targets
- Target vs biomarker
- Account for tumour type particularities on magnitude of benefit (PFS, OS)
- Improve assessment of combination of targets and prioritization of same-level targets
- Prognostic vs predictive, positive vs negative predictive value (response/resistance)

EXAMPLE: METASTATIC BREAST CANCERS

In-frame insertion exon 20 (Ex:

Y772_A775dup)

Alterations	Alteration considered	Alteration not considered	LOE	References
ERBB2 amplification	Focal amplification (DNA copy number ≥6; size ≤10 Mb)	DNA gain (DNA copy number <6)	IA	Romond et al. [13] Fehrenbacher et al. [14] Di Leo et al. [15] Perou CM, Nature 2000 [16]
Germline BRCA1/2 mutations	Truncated mutations: InDel, splice-site, non- sense (except known truncating poly- morphic variant, i.e. BRCA2 K3326X). Rare known inactivating missense mutations (pathogenic variant class 5)	Most of missense variants (classes 1–4)	IA	Robson et al. [17] Litton et al. [18]
PIK3CA mutations	Major hot-spot activating missense mutations (E542K, E545K/A, H1047R/L)	Other missense mutations. Truncated mutations (InDel, splice-site, nonsense)	IA	Andre et al. [19] Hortobagyi et al. [20]
Microsatellite instability (MSI)	, , ,	,,,	IC	Cortes-Ciriano et al. [21] Le et al. [22] Pembrolizumab package insert [23
NTRK translocations			IC	Amatu et al. [24] Drilon et al. [25]
ESR1 mutations	Hot-spot activating missense mutations (E380Q, Y5375/C/N, D538G)	Other missense mutations. Truncated mutations (InDel, splice-site, nonsense)	IIA	Fribbens et al. [26]
PTEN loss	Homozygous deletions. Loss-of-function mutations: truncated mutations and known inactivating missense mutations	Other missense mutations	IIA	Schmid et al. [27]
AKT1 mutations	(Ex: R130Q/G) E17K	Other mutations	IIB	Numb
ANTI MULAUONS	EI/K	Other mutations	IID	Hyman et al. [28] Emma Dean et al. [29]
ERBB2 mutations	Hot-spot activating missense mutations (e.g. S310F/Y, L755S, V777L)	Not hot-spot missense mutations.	IIB	Hyman et al. [30] Ma et al. [31]

Truncated mutations

(InDel, splice-site, nonsense)

umber to test to get benefit: 20 (5% benefit) ber to test to get drug access: 2 (50% benefit)

> Clinical Actionability of molecular Targets (ESCAT) R. Condorelli ^{1,2}, F. Mosele ^{1,*}, B. Verret ¹, T. Bachelot ², P. L. Bedard ⁴, J. Cortes ⁵, D. M. Hyman ⁶, D. Juric ⁷, L. Krop ⁸, L. Bieche ⁹, C. Saura ¹⁰, C. Sotiriou ¹¹, F. Cardoso ¹², S. Loibli ¹³, F. Andre ¹ & N. C. Turner ¹⁴

Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for

Academic Institutions with NGS/PM programs

Pharmaceutical industry

Precision Medicine WG

Patient advocacy

NGS/diagnostic laboratories

FUTURE USE OF ESCAT

Implementation in Clinical Practice

- . Integration with public and private knowledge bases
- Should ESCAT be a classification system (educational/informative) or a medical decision-assistance tool (medical device)
- Better definition of the level of evidence derived from basket trials and prospective registries
- Do we need different ranking system to assess level of evidence for resistance biomarkers?
- How do we integrate emerging data? ESCAT needs to be an alive system.
- How do we seek feedback from end users and implements improvements.

TAKE HOME MESSAGES

- The advent of precision medicine and NGS technologies opens enormous possibilities, but also requires of adapting our medical decision making process to integrate genomics data
- . Genomics data adds one more layer into the complex decision making process, does not replace other components
- In order to avoid outcome disparities and inequalities, we need tools to facilitate interpretation of NGS data and scalability of precision medicine approaches to community practice
- ESCAT provides an harmonized vocabulary, based on clinical evidence, to estimate the clinical relevance of genomic findings
- . We need to work together with different stakeholders so this tool improves clinical practice

NGS REPORTS:

CLINICAL DECISION SUPPORTING SYSTEMS (DEVICE)

OR

MOLECULAR BOARDS RUN BY EXPERTS WHO USE RANKING SYSTEMS AND DATABASE?

ESCAT: A MULTI-INSTITUTION, INTERNATIONAL EFFORT

ESCAT Project team

- Debyani Chakravarty, US
- Rodrigo Dienstmann, Spain
- Svetlana Jezdic, ESMO
- Abel Gonzalez Perez, Spain
- Nuria Lopez Bigas, Spain
- Charlotte KY Ng, Switzerland
- Philippe L Bedard, Canada
- Giampaolo Tortora, Italy
- Jean-Yves Douillard, ESMO
- Eli Van Allen, US
- Nikki Schultz, US
- Charles Swanton, UK
- Fabrice Andre, France
- Lajos Pusztai, US
- Joaquin Mateo, Spain

ESMO Translational Research and Precision Medicine Working Group

ESMO Leadership

Josep Tabernero
Fortunato Ciardello
Solange Peters
Andres Cervantes
Jean-Yves Douillard