Clinical applications of single cell analyses

Fabrice ANDRE Gustave Roussy

DISCLOSURE SLIDE

- Research grant and/or consultant/speaker compensated to the hospital: Novartis, Astra, Pfizer, Daiichi Sankyo, Lilly, Roche
- Founder: Pegacsy

Outline

- Single cell sequencing: isolation & analyses
- Single cell proteomics & epigenetics
- Spatial distribution
- Computational analyses
- Conclusion

Isolation —> lysis —> DNA amplification —> Sequencing —> Bioinformatics

Overview methods of single cell isolation

	Micro-manipulation / Automated Pipetting	FACS	Microwell encapsulation	Droplet encapsulation
Cell Stress	Low	Moderate	Moderate	Moderate
Selection	Yes	Yes	No* / Yes++	No*
Doublet	Low	Low	Low-High	Moderate
Throughput	Low	Moderate	Moderate	High
Capture efficency	Low	Moderate	Moderate	Low-Moderate
Academic / Commerical scRNA workflow	- CellenONE (Cellenion)‡ - Smart-Seq2 (42)	- MARS-Seq (39) - Smart-Seq2 (42)	- C1 (Fluidigm) - ddSeq (Biorad / Illumina) - ICell8 (Clontech)++ - Rhapsody (BD)	- InDrop (1CellBio) - DropSeq (Dolomite-bio) - 10X (Chromium)
Example of use	Fragile rare cells	Rare cells based on phenotype or marking	Large cell numbers	Large cell numbers

Overview methods of single cell isolation

(B) Microwell array-based microfluidics

Figure 1. Panel 1: Technologies. (A) In conventional single-cell RNA sequencing (scRNA-seq), individual cells are flow sorted into multiwell plates. RNA-seq libraries of individual cells are prepared, barcoded in separate wells (per-cell reaction volume: $\sim 10 \mu$ I) and pooled together for next-generation sequencing. (B) In high-throughput scRNA-seq with microfabricated microwell arrays, individual cells are co-encapsulated with individual, uniquely barcoded mRNA-capture beads in physically isolated microwells (per-cell reaction volume: $\sim 10 \mu$ I) and pooled together for next-generation sequencing. (B) In high-throughput scRNA-seq with microfabricated microwell arrays, individual cells are co-encapsulated with individual, uniquely barcoded mRNA-capture beads in physically isolated microwells (per-cell reaction volume: $\sim 100 p$ I). Reverse transcription of bead-captured mRNA molecules results in the incorporation of a bead-specific barcode into each cDNA molecule. The barcoded cDNA molecules from all cells are then pooled together and converted into a single RNA-seq library. (C) High-throughput scRNA-seq with droplet-based microfluidics is similar to (B) except that the co-encapsulation occurs in droplets (per-cell reaction volume: ~ 11 nI). (D) In conventional RNA

Levitin, Trends in Cancer, 2018

Droplet

Macosko, Cell, 2015

Hydrodynamics trap

Narayanamurthy, Analytical Methods, 2017

Isolation —> lysis —> DNA amplification —> Sequencing —> Bioinformatics

	Full length			3' sequencing and barcoding					
Applications	Gene expression Splice variants and BCR and TCR repertoire diversity			Gene expression					
Costs	High			Low					
	Smart- Seq2	Smarter /ICell8/C1	NuGEN Solo	MARS- Seq	ddSeq	Rhapsody	InDrop	DropSeq	10X*
UMI	-	-	V	V	\checkmark	V	\checkmark	\checkmark	V
mRNA priming (1st strand syn)	poly T	poly T	Random priming & poly T	poly T	poly T	poly T	poly T	poly T	poly T
Template Switching	V	V	-	-	-	-	-	\checkmark	V
DNase treatment	-	-	V	V	-	-	-	-	-
cDNA preamplification	PCR	PCR	-	In Vitro Transcription	PCR	PCR	In Vitro Transcription	PCR	PCR
Targeted sequencing	-	-	Depletion	-	-	Enrichment	-	-	-
Library generation	Transposon Tagmentation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp	RNA fragmentation & adapter ligation	Transposon Tagmentation	PCR targeted primer panels	RNA fragmentation & adapter ligation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp
Example of use	Sequencing the TCR of tumour-infiltrating lymphocytes			High-throughput sequencing of large cell numbers from solid organ tumours in large patient cohorts					

*10X has recently released a 5' barcoding that allows reconstruction of full length idiotype sequences

	Full length				3' sequencing and barcoding					
Applications	Gene expression Splice variants and BCR and TCR repertoire diversity				Gene expression					
Costs	High				Low					
	Smart- Seq2	Smarter /ICell8/C1	NuGEN Solo	MARS- Seq	ddSeq	Rhapsody	InDrop	DropSeq	10X*	
UMI	-	-	V	V	V	V	V	V	V	
mRNA priming (1st strand syn)	poly T	poly T	Random priming & poly T	poly T	poly T	poly T	poly T	poly T	poly T	
Template Switching	V	V	_	Distri	butio	n of tl	he cel	l pop	ulatio	
DNase treatment	-	-	V	V	-	-	-	-	-	
cDNA preamplification	PCR	PCR	-	In Vitro Transcription	PCR	PCR	In Vitro Transcription	PCR	PCR	
Targeted sequencing	-	-	Depletion	-	-	Enrichment	-	-	-	
Library generation	Transposon Tagmentation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp	RNA fragmentation & adapter ligation	Transposon Tagmentation	PCR targeted primer panels	RNA fragmentation & adapter ligation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp	
Example of use	Sequ tumour-in	encing the ⁻ filtrating lyı	TCR of mphocytes	High	-throughpu solid orga	it sequencir n tumours i	ng of large o n large patio	ell number ent cohorts	s from	
*10X has recently released a 5' barcoding that allows reconstruction of full length idiotype sequences										

Nguyen, Front Immunol, 2018

Single cell seq to analyze the distribution of cell populations

Distribution of lymphocytes in breast cancers

Savas, Nat Med, 2017

		ulllengt	h	3' sequencing and barcoding					
	Full length			5 sequencing and barcoung					
Applications	Gene expression Splice variants and BCR and TCR repertoire diversity			Gene expression					
Costs	High			Low					
	Smart- Seq2	Smarter /ICell8/C1	NuGEN Solo	MARS- Seq	ddSeq	Rhapsody	InDrop	DropSeq	10X*
UMI	-	-	V	V	\checkmark	V	V	\checkmark	V
mRNA priming (1st strand syn)	poly T	poly T	Random priming & poly T	poly T	poly T	poly T	poly T	poly T	poly T
Те СНА Sv	RACT	ERIZE	single	e cell	S_	-	-	\checkmark	V
DNase treatment	-	-	V	V	-	-	-	-	-
cDNA preamplification	PCR	PCR	-	In Vitro Transcription	PCR	PCR	In Vitro Transcription	PCR	PCR
Targeted sequencing	-	-	Depletion	-	-	Enrichment	-	-	-
Library generation	Transposon Tagmentation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp	RNA fragmentation & adapter ligation	Transposon Tagmentation	PCR targeted primer panels	RNA fragmentation & adapter ligation	Transposon Tagmentation	cDNA fragmentation, adapter ligation & library amp
Example of use	Sequencing the CR of turneur-infiltrating lymphocytes			High-throughput sequencing of large cell numbers from solid organ tumours in large patient cohorts					

*10X has recently released a 5' barcoding that allows reconstruction of full length idiotype sequences

Single cell seq to characterize subclones

Subclone dynamics

(copy number analyses, not sequencing)

Kim, Cell, 2018

Assessing intratumor heterogeneity

Rodriguez, Mol Cell

Outline

- Single cell sequencing: isolation & analyses
- Single cell proteomics & epigenetics
- Spatial distribution
- Computational analyses
- Conclusion

Mass Cytometry

Bodenmiller's lab webpage

Flow of a research project on mass cytometry

Wagner, Cell 2019

Immune landscape in breast cancer patients

Lymphocytes and myeloid populations in a single patient NO spatial distribution

Wagner, Cell 2019

Outline

- Single cell sequencing: isolation & analyses
- Single cell proteomics & epigenetics
- Spatial distribution
- Computational analyses
- Conclusion

Concept

 Use a spatial guided laser to isolate and localize each cell

• Apply single cell analyses

• Relocate molecular signal according to the initial position of the laser

Imaging mass cytometry

Figure 1 | Workflow of imaging mass cytometry.

Giesen, Nat Methods, 2014

Imaging mass cytometry

Giesen, Nat Methods, 2014

Spatially resolved single cell DNA seq

Casasent, Cell 2018

Linking DCIS and invasive cancers

multiplexed NGS

spatial XY coordinates

Applications

• Whether spatial distribution predicts outcome, drug responses

• Correlate different compartments

Outline

- Single cell sequencing: isolation & analyses
- Single cell proteomics & epigenetics
- Spatial distribution
- Computational analyses
- Conclusion

Data vizualization: tsne reduction of dimension

Azizi, Cell, 2018

Conclusion

Broad considerations	Model-specific or practical considerations	Resources and References
Characterize specific rare cell population OR de novo discovery?	How many cells? Sequencing depth? Intra-population heterogeneity?	powsimR
Study design		
What tissues? solid vs liquid? fresh vs. archived?	Heterogeneity in cell size? Heterogeneity in cell surface markers? Microanatomical location? Minimization of batch effects?	FACS, microfluidics, others (see Fig. 2)
Single-cell isolation		
well-annotated genome OR de novo genome	Single or paired end? 3' or full length transcripts?	(see Fig. 3)
Sequencing		
Supervised OR unsupervised? Analysis	Read QC Read quantitation Preprocessing ID subpopulations and gene sets Functional annotation	command-line tools, R/Bioconductor packages
-		
Further experimental validation		