

Abdominal Wall Hernias

What should radiologists be aware of?

Patrícia Costa¹, Ana Catarina Silva¹, Fernando Ferreira², Cristiana Campos³, Catarina Abreu Silva¹, Maria José Ribeiro¹, Concepción Martinez⁴

¹Serviço de Imagiologia, Hospital Pedro Hispano – ULS Matosinhos

² Serviço de Cirurgia Geral, Hospital Pedro Hispano – ULS Matosinhos

³ Serviço de Anestesiologia, Hospital Pedro Hispano – ULS Matosinhos

³ Serviço de Radiologia, Hospital POVISA - Vigo

- Present the distinguishing features of the different abdominal wall hernias (AWH).
- Review the imagiological findings of AWH and its pre- and postsurgical complications.
- Establish the advantages of calculating the volumes of abdominal cavity and hernial sac, when loss of domain is suspected.

Background

- AWH are a common finding in abdominal CT, that most often requires surgical treatment, which can be emergent if a complication is present.
- Post-surgical complications occur in 20-50%. \rightarrow 50% of them require reintervention, which results in a heavy burden in health care costs.
- Incisional hernias are a frequent subtype of AWH, being especially prone to become giant, and thus to loss of domain, a condition that is associated with high rates of post-surgical complications

 \rightarrow May be prevented by preoperative progressive pneumoperitoneum (PPP).

Abdominal hernias – Imagiological findings:

- Abdominal wall defect with: ightarrow
 - Neck lacksquare
 - Hernial sac with intraabdominal contents ightarrow
- May respond to provocative maneuvers ightarrow
- Characterized primarily according to its <u>location</u> \rightarrow Predict the <u>risk of complications</u>

Fig. 1 – CT evaluation of incisional hernia (A) that becames more evident with Valsalva maneuver (B).

Background

The radiologist is able to **identify the abdominal hernia**, but also **other pathological processes that can mimic it** clinically.

Fig. 2 – Pathologies that clinically mimic inguinal hernias, but are promptly identified radiologically.

Patent peritoneovaginal duct (A.); Testicular immature teratoma (B.); B-cell Non-Hodgkin lymphoma (C.) with retroperitoneal and mesenteric mass (arrow), extending along the spermatic cord (arrowhead).

Types of AWH:

- Groin hernias
 - Inguinal the most common of AWH
 - Direct
 - Indirect
 - Femoral

Ventral hernias – anterior and lateral abdominal wall

- Midline hernias (+++) Linea Alba
 - Umbilical (+++)
 - Paraumbilical
 - Epigastric
 - Hypogastric
- Paramedian/lateral defects
- Lumbar hernias
- Incisional Hernias
 - Parastomal hernias

Strangulation and Incarceration are common

Inguinal Hernias \rightarrow ++ males

Indirect – laterally to inferior epigastric vessels

Fig. 3 – Contrast-enhanced CT (CECT) in the axial plane, in two different levels (A. and B.), showing indirect inguinal hernia, which contains bowel loops and originates laterally to the epigastric vessels.

✓ Childs → ++ indirect hernia – failure in the obliteration of the peritoneal extension accompanying the testis

Inguinal Hernias \rightarrow ++ males

- Indirect laterally to inferior epigastric vessels
- Direct medially to the inferior epigastric vessels

Fig. 4 – CECT in the axial plane (A.) and sagittal plane (B.), showing inguinal direct hernia (arrow), which contains bladder, and originates laterally to the epigastric vessels (arrowhead).

Adults \rightarrow both types – acquired weakness of the internal inguinal ring \checkmark

Inguinal Hernias \rightarrow ++ males

- Indirect laterally to inferior epigastric vessels
- Direct medially to the inferior epigastric vessels

Fig. 5 – CT in the axial plane, in two different levels showing direct inguinal hernia, which contains bladder, displacing the inguinal canal laterally, which acquires the form of a semicircle \rightarrow Lateral Crescent Sign.

Adults \rightarrow both types – acquired weakness of the internal inguinal ring

<u>Amyand Hernia</u> – inguinal hernia containing the cecal appendix.

Femoral Hernias \rightarrow ++ females

- Medially to the femoral vein and posteriorly to the inguinal ligament
- ++ Right side

Fig. 6 – CECT in the axial plane showing femoral hernia (arrow), which contains bowel loop, originating posterior and inferior to the inguinal ligament, and located medial to the femoral vein (arrowhead).

<u>**De Garengeot Hernia**</u> – femoral hernia containing the cecal appendix

Umbilical Hernias \rightarrow ++ females

++ small size

Paraumbilical Hernias

 \rightarrow ++ large defects \rightarrow ++ diastasis of the rectus abdominis muscles

Fig. 7 – CECT in the axial plane showing umbilical hernia (A.) and paraumbilical hernia (B.) (arrows) in two different patients. Both contain bowel loops. Paraumbilical hernia is seen as a diastasis of the rectus abdominis muscles.

Epigastric hernias

Above the umbilicus

Hypogastric hernias

Below the umbilicus

Fig. 8 – CECT in the axial plane showing epigastric hernia (arrow) containing only fat.

Paramedian/lateral defects \rightarrow Less common than median defects

- ++ omentum and short segments of bowel
- Incarceration is common

Fig. 9 – CECT in the axial (A.) and sagittal (B.) plane, showing paraumbilical hernia (arrow) containing bowel loop, just lateral to the umbilicus (arrowhead).

Lumbar hernias

Below the rib cage and above the iliac crests

- ✓ Diffuse (+++) → after surgery (++ kidney surgery) or trauma
 - May contain bowel loops, retroperitoneal fat, kidneys and other viscera.

Fig. 10 – CECT in the axial (A.) and coronal (B.) plane showing lumbar hernia (arrow), containing bowel loops, which appeared after kidney surgery.

rauma eys and other viscera.

Lumbar hernias

Below the rib cage and above the iliac crests

- ✓ Diffuse (+++) → after surgery (++ kidney surgery) or trauma
 - May contain bowel loops, retroperitoneal fat, kidneys and other viscera.
- Herniation through the superior or inferior lumbar triangle
 - Superior Internal oblique muscle (anteriorly), 12th rib (superiorly), erector spinal muscle (posteriorly)
 - Inferior External oblique muscle (anteriorly), iliac crest (inferiorly), latissimus dorsi muscle (posteriorly)

- rauma eys and other viscera.
- angle h rib (superiorly), erector

Incisional hernias \rightarrow 2-15% of patients who undergo abdominal surgery

- Anywhere in the abdominal wall
- ++ in the first few months after surgery
- Difficult to detect at physical examination
- Recurrence after treatment may affect 46% patients

Fig. 11 – CECT in the axial plane showing incisional hernia (arrows) containing bowel loops. Subcutaneous scar also seen (arrowhead).

Incisional hernias \rightarrow 2-15% of patients who undergo abdominal surgery

- Anywhere in the abdominal wall
- ++ in the first few months after surgery

Fig. 12 – CECT in the axial plane showing parastomal hernia containing dilated small bowel loops (thick arrow) and free fluid (thin arrow).

✓ Parastomal Hernias → a subtype of incisional hernias

Other less common hernias

- Abdominal wall \rightarrow particular tendency to incarceration and strangulation
 - \checkmark Spigelian herniation along the semilunar line \rightarrow ++ interparietal
 - \checkmark Interparietal hernia sac in the fascial planes between the abdominal wall muscles \rightarrow ++ inguinal region
 - \checkmark Richter \rightarrow herniation of antimesenteric wall of the bowel that does not compromise the entire wall circumference \rightarrow ++ femoral
 - \checkmark Littre \rightarrow inguinal hernia that contains Meckel diverticulum
- Pelvis \rightarrow ++ elderly woman \rightarrow acquired weakness of the pelvic floor
 - Sciatic \rightarrow herniation through sciatic foramen (++ bowel loops or ureter) \checkmark Obturador \rightarrow herniation through obturador foramen (++ bowel loops or ureter) \checkmark Perineal (++) - adjacent to the anus or labia majora or in the gluteal region

Other less common hernias – Spigelian hernia

Fig. 13 – CECT in the axial (A.) and coronal (B.) plane showing Spigelian hernia (thin arrow) causing small bowel obstruction (dilated small bowel loops – thick arrow). Free fluid in the hernia sac is also seen (arrowhead).

Incarceration – irreducible sac

Extension of intraabdominal conditions into the hernia \rightarrow exacerbation of symptomatology

Complications

Bowel Obstruction

CT features:

- ✓ Dilated bowel proximal to the hernia (green arrows)
- Normal caliber or collapsed bowel distal to the obstruction (blue arrow)
- ✓ Transition point at the level of the hernia (red arrow)
- Dilatation of the herniated bowel loops (yellow arrow)
- ✓ Fecalization of the small bowel contents proximal to the obstruction
- **Concomitant signs of strangulation**

Fig. 14 – CECT in the sagittal plane showing umbilical hernia causing small bowel obstruction.

Complications

Second most frequent cause of small bowel obstruction. (colonic obstruction is uncommon)

□ Incarceration

Clinical diagnosis (not radiological!) \checkmark CT can predict it \rightarrow hernia sac has a narrow neck

Suspect of <u>impending strangulation</u> if:

- ✓ Free fluid within the hernia sac
- ✓ Bowel wall thickening
- **Luminal dilatation**

Fig. 15 – CECT in the axial plane showing paraostomal hernia containing dilated small bowel loops (thick arrow) and free fluid (thin arrow), which suggests impending incarceration. Note that the colonic loop forming the stoma has normal caliber (arrowhead).

Complications

Predisposes to other complications: Obstruction Ischemia

Strangulation

 \succ ++ when obstruction of the afferent and efferent bowel loops \rightarrow closed loop in the hernial sac

CT features:

- ✓ Dilated, fluid-filled U- or C-shaped loops within the hernial sac (yellow arrow) and proximal obstruction \rightarrow May have a "serrated beak" appearance at the transition point (blue arrow) ✓ Wall thickening
- ✓ Parietal hypo or hyperattenuation and enhancement (yellow arrow)
- Mesenteric vessel engorgement (red arrow)
- Mesenteric haziness (red arrow)
- ✓ Fat obliteration (green arrow)
- ✓ Ascites

Complications

High surgical mortality rate!

Fig. 16 – CECT in the axial plane showing umbilical hernia causing small bowel obstruction (dilated bowel loops – white arrows).

Complications

Loss of domain

When herniated viscera of the abdomen inhabit the hernia sac in a permanent way.

Fig. 17 – CECT in the axial plane showing giant incisional hernia.

++ Incisional hernias ++ Overweight patients

Complications

Loss of domain

Progressive preoperative pneumoperitoneum (PPP) → used to <u>achieve adequate</u> abdominal space to the reintegration of the hernia sac contents.

Performed if giant hernia \rightarrow ++ if hernia sac volume (HSV) is \geq 20-25% of abdominal cavity volume (ACV) \rightarrow Volume Ratio (VR) \geq 20-25%

Defined commonly as hernia sac > 10 cm in length or width

Fig. 18 – CECT in the axial plane showing giant incisional hernia before (A.) and after PPP (B. and C.), in two different timings.

Desired volume of gas = Calculated **volume of the hernia sac**

Complications

Loss of domain

- Calculating HSV and ACV \rightarrow the abdominal cavity and the hernia sac can be considered to be ellipsoid structures \rightarrow Three diameters: ✓ Longitudinal/cranio-caudal (a)

 - ✓ Transverse (b)
 - Anterior-posterior (c)

The largest measure of all slices of the entire CT scan, even if the measures were obtained from different slices

Fig. 19 – CECT in the sagittal reconstructed plane and axial plane showing how to measure the three diameters of the abdominal cavity.

: 137 : 120 1 no: 1 e: 38 of 72

Complications

Loss of domain

- ➤ Calculating HSV and ACV → the abdominal cavity and the hernia sac can be considered to be ellipsoid structures → Three diameters:
 - Longitudinal/cranio-caudal (a)
 - ✓ Transverse (b)
 - Anterior-posterior (c)

Formula for the volume of an ellipsoid: $V = 4/3 \times \prod x r1 \times r2 \times r3$

V = 0.52 x a x b x c

VR = HSV/ACV

Fig. 20 – CECT in the sagittal reconstructed plane and axial plane showing how to measure the three diameters of the hernia sac.

A: 137

Vp: 120 cg no: 1

age: 39 of 72

B

Complications

Fig. 21 – Giant hernia with loss of domain before treatment (A. – patient's photograph and axial CT), during PPP (B. patient's photograph and axial CT; arrow – extremity of the intrabdominal catheter) and after repair (C. – patient's photograph). *Courtesy of Dr. Fernando Ferreira*

Complications

Extension of intra-abdominal conditions

Fig. 22 – CECT in the sagittal reconstructed plane (A. and B.) and axial plane in two different levels (C.), showing intra-abdominal conditions extending to hernia sac in three different patients – A. Inguinal hernia containing ascitic fluid in patient with peritoneal carcinomatosis;
B. Umbilical hernia containing gas in a patient with bowel perforation;
C. Pseudomyxoma peritonei extending to inguinal hernia secondary to mucocele of the appendix.

Post-Surgical Complications

Fluid collections (infected or not)

++ immediate postoperative period
 ++ seromas or hematomas

CT features:

- ✓ Globular, tubular, or multilobular appearance
- ✓ Loculated, with enhancing rims
- May have airfluid levels

Fig. 23 – CECT (A.) and non-enhanced CT (B.) in the axial plane in the same patient, before and after parastomal hernia repair. A fluid collection (arrow) is seen in the immediate postoperative period.

Post-Surgical Complications

Fluid collections (infected or not)

- ++ immediate postoperative period
- ++ seromas or hematomas
- Suspicious findings of <u>infected</u> collection
 - ✓ <u>Clinical</u> Fever/leukocytosis
 - ✓ Imagiological:
 - Gas or thick septa in a previously "simple" collection
 - Enhancing rim
 - Adjacent fat stranding
 - "De novo" collection ≥ 1 week after surgical repair

Fig. 24 – Scrotal ultrasound examination (A.) and CECT in the axial plane (B.) in two different patients, after surgical hernia repair. **A.** Low level echoes and septa *"de novo"* in a previously simple large hydrocele. **B.** Fluid collection with enhancing rim.

Risk factor for hernia recurrence!

Post-Surgical Complications

Hernia Recurrence

- The most common complication
- ++ 2-3 years after surgery
- Clinical evaluation of recurrent hernias is usually limited due to:
 - The existence of nonabsorbable mesh and accompanying fibrosis
 - ✓ Obesity
 - Abdominal distention
 - Spontaneous contraction of the abdominal wall

Fig. 25 – CECT (A.) and non-enhanced CT (B.) in the axial plane in the same patient, before and after parastomal hernia repair, showing hernia recurrence.

Post-Surgical Complications

Mesh-related complications

- Fibrosis of the adjacent tissues (mesh with <u>asymmetric or irregular shape</u> at CT)
- Mesh shrinkage
- ➢ Intraperitoneal <u>adhesions</u> → risk of small bowel obstruction
- Mesh migrates within the abdominal wall

Fig. 26 – CECT in the sagittal reconstructed plane shows small bowel dilatation (thick arrow), with the transition point (arrowhead) next to the abdominal wall, few weeks after incisional hernia repair with surgical mesh, in keeping with small bowel obstruction secondary to adhesions, confirmed intraoperatively. Also shown, postoperative fluid collection with enhancing rim (thin arrow).

Conclusion

- Clinical evaluation of patients with AWH is often limited, mainly with incisional hernias, often associated with overweight.
- CT can accurately characterize the hernia location, size and contents, as well as the presence of pre- and post-surgical complications, allowing optimization of treatment approach.
- Calculating hernial sac and abdominal cavity volumes provides objective criteria to the selection of patients who'll benefit from PPP and the estimation of the amount of gas to insufflate.

Bibliography

- Aguirre, D., et al. Abdominal Wall Hernias: Imaging Features, Complications, and Diagnostic Pitfalls at Multi–Detector Row CT. RadioGraphics (2005) 25:1501–1520
- E.Y., Tanaka, et al. A computerized tomography scan method for calculating the hernia sac and abdominal cavity volume in complex large incisional hernia with loss of domain. Hernia (2010) 14:63–69
- Lassandro, F., et al. Abdominal hernias: Radiological features. World Journal Gastrointestinal Endoscopy (2011) 16; 3(6): 110-117
- Azar, F. K., et al. Ventral hernia repair in patients with abdominal loss of domain: an observational study of one institution's experience. Hernia (2017) 21(2):245-252